Suppr超能文献

一项多中心研究评估了一种新型 CAD 软件 DecXpert 在印度北部人群中放射学诊断结核病的诊断性能。

A multicentre study to evaluate the diagnostic performance of a novel CAD software, DecXpert, for radiological diagnosis of tuberculosis in the northern Indian population.

机构信息

Department of Pulmonary Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India.

Department of Radiodiagnosis, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh, 226014, India.

出版信息

Sci Rep. 2024 Sep 5;14(1):20711. doi: 10.1038/s41598-024-71346-x.

Abstract

Tuberculosis (TB) is the leading cause of mortality among infectious diseases globally. Effectively managing TB requires early identification of individuals with TB disease. Resource-constrained settings often lack skilled professionals for interpreting chest X-rays (CXRs) used in TB diagnosis. To address this challenge, we developed "DecXpert" a novel Computer-Aided Detection (CAD) software solution based on deep neural networks for early TB diagnosis from CXRs, aiming to detect subtle abnormalities that may be overlooked by human interpretation alone. This study was conducted on the largest cohort size to date, where the performance of a CAD software (DecXpert version 1.4) was validated against the gold standard molecular diagnostic technique, GeneXpert MTB/RIF, analyzing data from 4363 individuals across 12 primary health care centers and one tertiary hospital in North India. DecXpert demonstrated 88% sensitivity (95% CI 0.85-0.93) and 85% specificity (95% CI 0.82-0.91) for active TB detection. Incorporating demographics, DecXpert achieved an area under the curve of 0.91 (95% CI 0.88-0.94), indicating robust diagnostic performance. Our findings establish DecXpert's potential as an accurate, efficient AI solution for early identification of active TB cases. Deployed as a screening tool in resource-limited settings, DecXpert could enable early identification of individuals with TB disease and facilitate effective TB management where skilled radiological interpretation is limited.

摘要

结核病(TB)是全球传染病死亡的主要原因。有效管理结核病需要及早发现结核病患者。资源有限的环境中,通常缺乏专业人员来解读用于结核病诊断的胸部 X 光片(CXR)。为了应对这一挑战,我们开发了“DecXpert”,这是一种基于深度学习的新型计算机辅助检测(CAD)软件解决方案,用于从 CXR 中早期诊断结核病,旨在检测可能被人类单独解读忽视的细微异常。这项研究是在迄今为止最大的队列中进行的,该研究对 CAD 软件(DecXpert 版本 1.4)的性能进行了验证,与分子诊断金标准技术 GeneXpert MTB/RIF 进行了比较,分析了来自印度北部 12 个初级保健中心和 1 家三级医院的 4363 个人的数据。DecXpert 对活动性结核病的检测灵敏度为 88%(95%CI 0.85-0.93),特异性为 85%(95%CI 0.82-0.91)。结合人口统计学因素,DecXpert 的曲线下面积为 0.91(95%CI 0.88-0.94),表明其具有稳健的诊断性能。我们的研究结果确立了 DecXpert 作为一种准确、高效的人工智能解决方案,用于早期识别活动性结核病病例的潜力。在资源有限的环境中,作为一种筛查工具部署,DecXpert 可以帮助在专业放射学解读有限的情况下,早期发现结核病患者,并促进有效的结核病管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/075c/11377743/093cd96b5f0b/41598_2024_71346_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验