Olfati Atoosa, Karimi Naser, Arkan Elham, Zhaleh Mohsen, Mozafari M R
Department of Nano-Biotechnology, Faculty of Innovative Science and Technology, Razi University, Kermanshah 6714967346, Iran.
Department of Biology, Faculty of Science, Razi University, Kermanshah 6715847141, Iran.
J Funct Biomater. 2025 May 24;16(6):194. doi: 10.3390/jfb16060194.
Biocompatible nanocarriers were formulated by encapsulating medicinal extracts from (Red Bryony) and (Horned Poppy) using a nanophytosome approach. The nanophytosomes were prepared by employing a thin-film hydration technique. The SEM results showed a broad size distribution for both nanophytosomes, and the encapsulation efficiency was about 75-80% for both Red Bryony and Horned Poppy nanophytosomes, as confirmed through scanning electron microscopy (SEM) and dynamic light scattering (DLS). Zeta potential analysis indicated sufficient surface charges to maintain colloidal stability. Encapsulation improved the release characteristics of the extracts, exhibiting an initial burst release followed by sustained release, which is advantageous for enhancing bioavailability within a liquid environment. Fourier-transform infrared (FTIR) spectroscopy identified key functional groups, confirming the successful encapsulation of bioactive ingredients within the nanophytosomes. Cytotoxicity tests on fibroblast cell lines (HSF-PI 16) demonstrated the safety of these nanocarriers, indicating biocompatibility at concentrations up to 200 μg/mL. Stability tests over 30 days revealed minimal size fluctuations, further supporting the structural integrity of the formulations. Results suggest that the synthesized nanophytosomes could serve as effective and novel nanocarriers for herbal delivery, addressing the bioavailability limitations of herbal extracts and offering a promising approach for therapeutic applications in both traditional and alternative medicine. This is the first study to report nanophytosome-based delivery of Red Bryony and Horned Poppy extracts.
通过采用纳米植物体方法,将来自商陆(Phytolacca americana)和角罂粟(Glaucium corniculatum)的药用提取物进行包封,制备了生物相容性纳米载体。纳米植物体采用薄膜水化技术制备。扫描电子显微镜(SEM)结果显示,两种纳米植物体的粒径分布较宽,通过扫描电子显微镜(SEM)和动态光散射(DLS)证实,商陆和角罂粟纳米植物体的包封率均约为75-80%。zeta电位分析表明,表面电荷足以维持胶体稳定性。包封改善了提取物的释放特性,表现出初始突释后持续释放的特点,这有利于在液体环境中提高生物利用度。傅里叶变换红外(FTIR)光谱鉴定了关键官能团,证实生物活性成分成功包封在纳米植物体内。对成纤维细胞系(HSF-PI 16)的细胞毒性试验证明了这些纳米载体的安全性,表明在浓度高达200μg/mL时具有生物相容性。30天的稳定性试验显示粒径波动极小,进一步支持了制剂的结构完整性。结果表明,合成的纳米植物体可作为有效的新型草药递送纳米载体,解决草药提取物的生物利用度限制问题,并为传统医学和替代医学的治疗应用提供了一种有前景的方法。这是第一项报道基于纳米植物体递送商陆和角罂粟提取物的研究。
Cochrane Database Syst Rev. 2018-1-16
Cochrane Database Syst Rev. 2001
Cochrane Database Syst Rev. 2022-5-20
Nanomaterials (Basel). 2021-8-18
Health Technol Assess. 2001
Cochrane Database Syst Rev. 2016-10-6
Cochrane Database Syst Rev. 2018-1-22
Phytother Res. 2024-7
J Phys Chem Lett. 2024-5-9
Drug Deliv Transl Res. 2024-6