Suppr超能文献

评估中国佩里斯的栖息地适宜性:基于最大熵模型的预测分析。

Assessing Habitat Suitability for Perris in China: A MaxEnt-Based Predictive Analysis.

作者信息

Ahmad Sabbir, Xu Danping, Deng Xinqi, He Zhipeng, Ali Habib, Zhuo Zhihang

机构信息

College of Life Science, China West Normal University, Nanchong 637002, China.

Department of Agriculture Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan.

出版信息

Insects. 2025 May 29;16(6):576. doi: 10.3390/insects16060576.

Abstract

Climate change reshapes species distributions, necessitating proactive measures to mitigate ecological impacts. This study investigates the potential spread of , a bark beetle with significant ecological consequences, under future climate scenarios in China. Using the MaxEnt model, we integrated occurrence records and scientific literature with bioclimatic and terrain variables to predict habitat suitability. The results reveal that 's distribution is highly influenced by precipitation and temperature, with key variables like annual precipitation (bio12, 30.4% contribution) and the minimum temperature of the coldest month (bio6, 29% contribution) driving habitat suitability. Notably, under high-emission scenarios (SSP5-8.5), high-suitability areas could expand by 82.29% by the 2050s due to warming-induced precipitation changes in southwestern China. Model validation confirms a high predictive accuracy, with an AUC value of 0.92, underscoring the reliability of these projections. These findings highlight the beetle's potential to colonize new regions, posing risks to forest ecosystems. The study underscores the need for adaptive management strategies, including early detection and climate-resilient forestry practices, to safeguard vulnerable ecosystems from invasive species under climate change.

摘要

气候变化重塑了物种分布,因此需要采取积极措施来减轻生态影响。本研究调查了一种具有重大生态影响的树皮甲虫在中国未来气候情景下的潜在扩散情况。我们使用最大熵模型(MaxEnt),将发生记录和科学文献与生物气候和地形变量相结合,以预测栖息地适宜性。结果表明,该甲虫的分布受降水和温度的影响很大,像年降水量(bio12,贡献率30.4%)和最冷月最低温度(bio6,贡献率29%)等关键变量决定了栖息地适宜性。值得注意的是,在高排放情景(SSP5-8.5)下,到2050年代,由于中国西南部变暖导致的降水变化,高适生区可能会扩大82.29%。模型验证证实了较高的预测准确性,AUC值为0.92,突出了这些预测的可靠性。这些发现凸显了这种甲虫在新区域定殖的潜力,对森林生态系统构成风险。该研究强调了采取适应性管理策略的必要性,包括早期检测和气候适应型林业实践,以保护脆弱生态系统免受气候变化下入侵物种的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8b0/12192762/6768e7203b32/insects-16-00576-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验