Suppr超能文献

基于PDA-YOLO的高精度储粮害虫检测方法

High-Precision Stored-Grain Insect Pest Detection Method Based on PDA-YOLO.

作者信息

Sun Fuyan, Guan Zhizhong, Lyu Zongwang, Liu Shanshan

机构信息

Key Laboratory of Grain Information Processing and Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China.

Henan Key Laboratory of Grain Storage Information Intelligent Perception and Decision Making, Henan University of Technology, Zhengzhou 450001, China.

出版信息

Insects. 2025 Jun 10;16(6):610. doi: 10.3390/insects16060610.

Abstract

Effective stored-grain insect pest detection is crucial in grain storage management to prevent economic losses and ensure food security throughout production and supply chains. Existing detection methods suffer from issues such as high labor costs, environmental interference, high equipment costs, and inconsistent performance. To address these limitations, we proposed PDA-YOLO, an improved stored-grain insect pest detection algorithm based on YOLO11n which integrates three key modules: PoolFormer_C3k2 (PF_C3k2) for efficient local feature extraction, Attention-based Intra-Scale Feature Interaction (AIFI) for enhanced global context awareness, and Dynamic Multi-scale Aware Edge (DMAE) for precise boundary detection of small targets. Trained and tested on 6200 images covering five common stored-grain insect pests (Lesser Grain Borer, Red Flour Beetle, Indian Meal Moth, Maize Weevil, and Angoumois Grain Moth), PDA-YOLO achieved an mAP@0.5 of 96.6%, mAP@0.5:0.95 of 60.4%, and 1 score of 93.5%, with a computational cost of only 6.9 G and mean detection time of 9.9 ms per image. These results demonstrate the advantages over mainstream detection algorithms, balancing accuracy, computational efficiency, and real-time performance. PDA-YOLO provides a reference for pest detection in intelligent grain storage management.

摘要

有效的储粮害虫检测在粮食储存管理中至关重要,可防止经济损失并确保整个生产和供应链中的粮食安全。现有检测方法存在劳动力成本高、环境干扰、设备成本高以及性能不一致等问题。为解决这些局限性,我们提出了PDA - YOLO,这是一种基于YOLOv7改进的储粮害虫检测算法,它集成了三个关键模块:用于高效局部特征提取的PoolFormer_C3k2(PF_C3k2)、用于增强全局上下文感知的基于注意力的尺度内特征交互(AIFI)以及用于小目标精确边界检测的动态多尺度感知边缘(DMAE)。在涵盖五种常见储粮害虫(谷蠹、赤拟谷盗、印度谷螟、玉米象和麦蛾)的6200张图像上进行训练和测试,PDA - YOLO的mAP@0.5达到96.6%,mAP@0.5:0.95达到60.4%,F1分数达到93.5%,计算成本仅为6.9 G,平均每张图像的检测时间为9.9 ms。这些结果证明了其相对于主流检测算法的优势,在准确性、计算效率和实时性能之间取得了平衡。PDA - YOLO为智能粮食储存管理中的害虫检测提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c8d/12193345/2df7e4267097/insects-16-00610-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验