de la O Victor, de Cuevillas Begoña, Henkrich Miksa, Vizmanos Barbara, Nuñez-Garcia Maitane, Sajoux Ignacio, de Luis Daniel, Martínez J Alfredo
Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute, Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain.
Faculty of Health Sciences, International University of La Rioja (UNIR), 26006 Logroño, Spain.
J Pers Med. 2025 Jun 14;15(6):251. doi: 10.3390/jpm15060251.
: Obesity is a major global public health issue with no fully satisfactory solutions. Most nutritional interventions rely on caloric restriction, with varying degrees of success. Very low-calorie ketogenic diets (VLCKD) have demonstrated rapid and sustained weight loss by inducing ketone bodies through lipolysis, reducing appetite, and preserving lean mass while maintaining metabolic health. : A prospective clinical study analyzed sociodemographic, anthropometric, and adherence data from 7775 patients undergoing a multidisciplinary nutritional single-arm intervention based on a commercial weight-loss program. This method, using protein preparations with a specific balanced nutritional profile, aimed to identify key predictors of weight-loss success and classify population phenotypes with shared baseline characteristics and weight-loss patterns to optimize treatment personalization. : Statistical and machine learning analyses revealed that male gender (-9.2 kg vs. -5.9 kg) and higher initial body weight (-8.9 kg vs. -4.0 kg) strongly predict greater weight loss on a VLCKD, while age has a lesser impact. Two distinct population clusters emerged, differing in age, sex, follow-up duration, and medical visits, demonstrating unique weight-loss success patterns. These clusters help define individualized strategies for optimizing outcomes. : These findings translationally support associations with the efficacy of a multidisciplinary VLCK weight-loss program and highlight predictors of success. Recognizing variables such as sex, age, and initial weight enhances the potential for a precision-based approach in obesity management, enabling more tailored and effective treatments for diverse patient profiles and prescribe weight loss personalized recommendations.
肥胖是一个重大的全球公共卫生问题,目前尚无完全令人满意的解决方案。大多数营养干预措施依赖于热量限制,其成功率各不相同。极低热量生酮饮食(VLCKD)通过脂肪分解诱导酮体生成、降低食欲并在维持代谢健康的同时保持瘦体重,已证明能实现快速且持续的体重减轻。
一项前瞻性临床研究分析了7775名接受基于商业减肥计划的多学科营养单臂干预患者的社会人口统计学、人体测量学和依从性数据。该方法使用具有特定营养均衡特征的蛋白质制剂,旨在确定减肥成功的关键预测因素,并对具有共同基线特征和减肥模式的人群表型进行分类,以优化治疗个性化。
统计分析和机器学习分析表明,男性(-9.2千克 vs. -5.9千克)和更高的初始体重(-8.9千克 vs. -4.0千克)强烈预测在极低热量生酮饮食上能实现更大程度的体重减轻,而年龄的影响较小。出现了两个不同的人群集群,在年龄、性别、随访时间和就诊次数方面存在差异,呈现出独特的减肥成功模式。这些集群有助于确定优化治疗效果的个性化策略。
这些研究结果从转化医学角度支持了多学科极低热量生酮饮食减肥计划的疗效关联,并突出了成功的预测因素。认识到性别、年龄和初始体重等变量,增强了肥胖管理中基于精准方法的潜力,能够为不同患者群体提供更具针对性和有效的治疗,并开出个性化的减肥建议。