Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
Nat Commun. 2023 Jun 9;14(1):3390. doi: 10.1038/s41467-023-38859-x.
Elucidating intracellular drug targets is a difficult problem. While machine learning analysis of omics data has been a promising approach, going from large-scale trends to specific targets remains a challenge. Here, we develop a hierarchic workflow to focus on specific targets based on analysis of metabolomics data and growth rescue experiments. We deploy this framework to understand the intracellular molecular interactions of the multi-valent dihydrofolate reductase-targeting antibiotic compound CD15-3. We analyse global metabolomics data utilizing machine learning, metabolic modelling, and protein structural similarity to prioritize candidate drug targets. Overexpression and in vitro activity assays confirm one of the predicted candidates, HPPK (folK), as a CD15-3 off-target. This study demonstrates how established machine learning methods can be combined with mechanistic analyses to improve the resolution of drug target finding workflows for discovering off-targets of a metabolic inhibitor.
阐明细胞内药物靶点是一个难题。尽管基于组学数据的机器学习分析是一种很有前途的方法,但从大规模趋势到具体靶点仍然是一个挑战。在这里,我们开发了一种层次化的工作流程,基于代谢组学数据的分析和生长拯救实验,专注于特定的靶点。我们将该框架应用于理解多价二氢叶酸还原酶靶向抗生素化合物 CD15-3 的细胞内分子相互作用。我们利用机器学习、代谢建模和蛋白质结构相似性分析全球代谢组学数据,对候选药物靶点进行优先级排序。过表达和体外活性测定实验证实了预测的候选物之一 HPPK(folK)是 CD15-3 的脱靶靶点。本研究展示了如何将成熟的机器学习方法与机制分析相结合,以提高代谢抑制剂的药物靶点发现工作流程的分辨率,从而发现其脱靶效应。