Eddins Alex J, Gangarde Yogesh M, Singh Anamika, Jana Subhashis, Zheng Yunan, Alexander Nathan D, Reitsma Justin M, Cooley Richard B, Karplus P Andrew, Mehl Ryan A
Department of Biochemistry and Biophysics & GCE4All Research Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States.
Technology & Therapeutic Platforms, AbbVie Inc., North Chicago, Illinois 60064, Untied States.
J Am Chem Soc. 2025 Jul 9;147(27):23625-23634. doi: 10.1021/jacs.5c04605. Epub 2025 Jun 25.
The site-specific attachment of fluorophores, probes, or drugs to proteins in living systems is critical for advancing our understanding of biology and drug development. The site-specific encoding of 1,2,4,5-tetrazine (Tet) residues into target proteins provides the rapid kinetics and stability required for quantitative labeling in living cells, a property that is increasingly desirable as the resolution and specificity of imaging increases. Here, we adapt a common gel-shift assay to create a "PEG Chaser assay" for evaluating labeling completeness in living cells by "chasing" in-cell Tet reactions with an reaction with a TCO-PEG polymer; then, a gel shift distinguishes proteins that did not react in cells from those that did. We apply this to observe that encoded Tets exist in an equilibrium between oxidized (Tz) and reduced (DHTz) forms in living cells. We further show how a recently developed photooxidation treatment can convert the nonreactive DHTz Tet-protein to the reactive Tz form and enables its rapid, quantitative in-cell labeling. We then develop genetic code expansion machinery for encoding two new Tet ncAAs with different redox potentials and show how the tuning of the Tet redox is a useful variable for controlling the reactivity of Tet ncAAs. Specifically, the new Tet3H ncAA enables photoactivatable labeling and complete protein labeling in living cells in 5 min. This in-depth evaluation of the impact of the intracellular reducing environment on Tet reactivity and the demonstration of controlling Tet redox in living cells expands the utility of encodable Tet in living cells.
在生命系统中,荧光团、探针或药物与蛋白质的位点特异性连接对于推动我们对生物学的理解和药物开发至关重要。将1,2,4,5-四嗪(Tet)残基位点特异性编码到目标蛋白质中,为活细胞中的定量标记提供了所需的快速动力学和稳定性,随着成像分辨率和特异性的提高,这一特性变得越来越重要。在这里,我们采用一种常见的凝胶迁移试验,创建了一种“PEG追踪试验”,通过用TCO-PEG聚合物“追踪”细胞内的Tet反应来评估活细胞中的标记完整性;然后,凝胶迁移将未在细胞中反应的蛋白质与已反应的蛋白质区分开来。我们应用此方法观察到,编码的Tet在活细胞中以氧化(Tz)和还原(DHTz)形式存在平衡。我们进一步展示了最近开发的光氧化处理如何将无反应性的DHTz Tet-蛋白质转化为有反应性的Tz形式,并实现其在细胞内的快速、定量标记。然后,我们开发了遗传密码扩展机制,用于编码两种具有不同氧化还原电位的新型Tet非天然氨基酸(ncAA),并展示了Tet氧化还原的调节是控制Tet ncAA反应性的一个有用变量。具体而言,新型Tet3H ncAA能够在5分钟内实现活细胞中的光激活标记和完整蛋白质标记。对细胞内还原环境对Tet反应性的影响的深入评估以及在活细胞中控制Tet氧化还原的证明,扩展了可编码Tet在活细胞中的应用。