Suppr超能文献

利用多模态数据,通过分层时空复用网络对强制输电中断的严重程度进行早期预测。

Leveraging multi-modal data for early prediction of severity in forced transmission outages with hierarchical spatiotemporal multiplex networks.

作者信息

Aljurbua Rafaa, Alshehri Jumanah, Gupta Shelly, Alharbi Abdulrahman, Obradovic Zoran

机构信息

Center for Data Analytics and Biomedical Informatics, Computer and Information Science Department, Temple University, Philadelphia, Pennsylvania, United States of America.

Department of Computer Science, College of Computer, Qassim University, Buraydah, Saudi Arabia.

出版信息

PLoS One. 2025 Jun 25;20(6):e0326752. doi: 10.1371/journal.pone.0326752. eCollection 2025.

Abstract

Extended power transmission outages caused by weather events can significantly impact the economy, infrastructure, and residents' quality of life in affected regions. One of the challenges is providing early, accurate warnings for these disruptions. To address this challenge, we introduce HMN-RTS, a hierarchical multiplex network designed to predict the duration of a forced transmission outage by leveraging a multi-modal approach. We investigate outage duration prediction over two years at the county level, focusing on the states of the Pacific Northwest region, including Idaho, California, Montana, Washington, and Oregon. The multiplex network layers collect diverse data sources, including information about power outages, weather data, weather forecasts, lightning, land cover, transmission lines, and social media. Our findings demonstrate that this approach enhances the accuracy of predicting power outage duration. The HMN-RTS model improves 3 hours ahead outage predictions, achieving a macro F1 score of 0.79 compared to the best alternative of 0.73 for a five-class classification. The HMN-RTS model provides valuable predictions of outage duration across multiple time horizons and seasons, enabling grid operators to implement timely outage mitigation strategies. Overall, the results underscore the HMN-RTS model's capability to deliver early and practical risk assessments.

摘要

天气事件导致的长时间输电中断会对受影响地区的经济、基础设施和居民生活质量产生重大影响。其中一个挑战是为这些中断提供早期、准确的预警。为应对这一挑战,我们引入了HMN-RTS,这是一种分层多路复用网络,旨在通过利用多模态方法预测强制输电中断的持续时间。我们在县一级对两年内的停电持续时间预测进行了调查,重点关注太平洋西北地区的州,包括爱达荷州、加利福尼亚州、蒙大拿州、华盛顿州和俄勒冈州。多路复用网络层收集各种数据源,包括有关停电、天气数据、天气预报、闪电、土地覆盖、输电线路和社交媒体的信息。我们的研究结果表明,这种方法提高了预测停电持续时间的准确性。HMN-RTS模型提前3小时改进了停电预测,在五类分类中,宏观F1得分为0.79,而最佳替代方案为0.73。HMN-RTS模型在多个时间范围和季节提供了有价值的停电持续时间预测,使电网运营商能够及时实施停电缓解策略。总体而言,结果强调了HMN-RTS模型进行早期和实际风险评估的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f24f/12192250/8e569621f3c6/pone.0326752.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验