酶驱动细胞微型机器人中各向异性壳包细胞纳米生物杂交体的自主化学代谢构建

Autonomous chemo-metabolic construction of anisotropic cell-in-shell nanobiohybrids in enzyme-powered cell microrobots.

作者信息

Kim Nayoung, Han Sang Yeong, Rheem Hyeong Bin, Lee Hojae, Choi Insung S

机构信息

Department of Chemistry, KAIST, Daejeon 34141, Korea.

Department of Chemistry, Hallym University, Chuncheon 24252, Korea.

出版信息

Sci Adv. 2025 Jun 27;11(26):eadu5451. doi: 10.1126/sciadv.adu5451. Epub 2025 Jun 25.

Abstract

Living organisms use intricate strategies to adapt and survive in response to potentially lethal environment changes. Inspired by cryptobiosis in nature, researchers have pioneered approaches to create cell-in-shell nanobiohybrids, aiming to endow cells with enhanced protection and exogenous functions. Yet, these methods still lack the biological autonomy intrinsic to natural cellular responses. Here, we present an innovative chemo-metabolically coupled strategy for the autonomous construction of cell-in-shell structures in cell growth medium. Our system harnesses ethanol fermentation by , chemically coupled with an enzymatic cascade involving alcohol oxidase and horseradish peroxidase, to drive the nanoshell formation of polydopamine. The integration of autonomous shell formation with cellular proliferation produces anisotropic cell-in-shell structures, which can serve as enzyme-powered cell microrobots, upon conjugation with urease. Our autonomous system enables the creation of cell-in-shell nanobiohybrids with dynamic and adaptive environmental interactions, paving the way for transformative applications in synthetic biology, such as artificial cells, as well as advancements in cell-based therapies.

摘要

生物体会采用复杂的策略来适应潜在的致命环境变化并生存下来。受自然界中隐生现象的启发,研究人员开创了创建壳包细胞纳米生物杂交体的方法,旨在赋予细胞更强的保护和外源功能。然而,这些方法仍然缺乏自然细胞反应所固有的生物自主性。在此,我们提出了一种创新的化学代谢耦合策略,用于在细胞生长培养基中自主构建壳包细胞结构。我们的系统利用[具体生物]的乙醇发酵,与涉及醇氧化酶和辣根过氧化物酶的酶级联反应进行化学耦合,以驱动聚多巴胺纳米壳的形成。自主壳形成与细胞增殖的整合产生了各向异性的壳包细胞结构,与脲酶结合后可作为酶驱动的细胞微型机器人。我们的自主系统能够创建具有动态和适应性环境相互作用的壳包细胞纳米生物杂交体,为合成生物学中的变革性应用(如人工细胞)以及基于细胞的治疗方法的进步铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/75ec/12189949/7107feb35b27/sciadv.adu5451-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索