Xu Shiwei, Wang Yongjun, Xu Xinglei, Shi Guang, Huang He, Zheng Yingya
School of Artificial Intelligence, Wenzhou Polytechnic, Wenzhou, 325000, China.
School of Computer Science, Xi'an Polytechnic University, Xi'an, 710055, China.
Sci Rep. 2025 Jun 25;15(1):16547. doi: 10.1038/s41598-025-00741-9.
The efficient utilization of wind energy relies on accurate wind power forecasting. However, existing methods face challenges in multi-step forecasting, including error accumulation, insufficient utilization of numerical weather prediction (NWP), and inadequate modeling of localized meteorological characteristics. To address these issues, this paper proposes a heterogeneous sequence-to-sequence (seq2seq) model based on PatchTST-GRU, integrated with NWP refinement. The heterogeneous seq2seq architecture employs a PatchTST backbone as the encoder to extract local temporal features from historical wind power data, combined with a GRU decoder to generate prediction sequences, thereby enhancing long-term dependency modeling. The NWP refinement module is developed to improve the usability of low-resolution NWP data through spatiotemporal scaling, providing future meteorological trend guidance for the decoder. Furthermore, a fusion attention mechanism with asymmetric query-key-value matrices is introduced to dynamically fuse historical wind power temporal patterns with refined NWP features, optimizing prediction outcomes. Experiments using real-world wind farm data demonstrate the effectiveness of the heterogeneous seq2seq architecture, NWP refinement and fusion attention mechanism. Within 48 to 288 forecasting steps, the proposed method outperforms conventional approaches, including light gradient boosting machine, support vector regression and seq2seq, in multiple evaluation metrics. This framework provides reliable multi-step power forecasting support for wind farm operations, while its heterogeneous seq2seq architecture exhibits potential for application to other time series prediction tasks.
风能的高效利用依赖于准确的风电功率预测。然而,现有方法在多步预测中面临挑战,包括误差累积、数值天气预报(NWP)利用不足以及局部气象特征建模不足。为解决这些问题,本文提出一种基于PatchTST-GRU的异构序列到序列(seq2seq)模型,并集成了NWP细化。异构seq2seq架构采用PatchTST主干作为编码器,从历史风电功率数据中提取局部时间特征,结合GRU解码器生成预测序列,从而增强长期依赖建模。开发NWP细化模块以通过时空缩放提高低分辨率NWP数据的可用性,为解码器提供未来气象趋势指导。此外,引入具有不对称查询-键-值矩阵的融合注意力机制,以动态融合历史风电功率时间模式与细化的NWP特征,优化预测结果。使用实际风电场数据进行的实验证明了异构seq2seq架构、NWP细化和融合注意力机制的有效性。在48至288步预测范围内,所提方法在多个评估指标上优于传统方法,包括轻梯度提升机、支持向量回归和seq2seq。该框架为风电场运营提供可靠的多步功率预测支持,而异构seq2seq架构在应用于其他时间序列预测任务方面具有潜力。