Suppr超能文献

端到端数据驱动的天气预报。

End-to-end data-driven weather prediction.

作者信息

Allen Anna, Markou Stratis, Tebbutt Will, Requeima James, Bruinsma Wessel P, Andersson Tom R, Herzog Michael, Lane Nicholas D, Chantry Matthew, Hosking J Scott, Turner Richard E

机构信息

Department of Computer Science and Technology, University of Cambridge, Cambridge, UK.

Department of Engineering, University of Cambridge, Cambridge, UK.

出版信息

Nature. 2025 May;641(8065):1172-1179. doi: 10.1038/s41586-025-08897-0. Epub 2025 Mar 20.

Abstract

Weather prediction is critical for a range of human activities, including transportation, agriculture and industry, as well as for the safety of the general public. Machine learning transforms numerical weather prediction (NWP) by replacing the numerical solver with neural networks, improving the speed and accuracy of the forecasting component of the prediction pipeline. However, current models rely on numerical systems at initialization and to produce local forecasts, thereby limiting their achievable gains. Here we show that a single machine learning model can replace the entire NWP pipeline. Aardvark Weather, an end-to-end data-driven weather prediction system, ingests observations and produces global gridded forecasts and local station forecasts. The global forecasts outperform an operational NWP baseline for several variables and lead times. The local station forecasts are skilful for up to ten days of lead time, competing with a post-processed global NWP baseline and a state-of-the-art end-to-end forecasting system with input from human forecasters. End-to-end tuning further improves the accuracy of local forecasts. Our results show that skilful forecasting is possible without relying on NWP at deployment time, which will enable the realization of the full speed and accuracy benefits of data-driven models. We believe that Aardvark Weather will be the starting point for a new generation of end-to-end models that will reduce computational costs by orders of magnitude and enable the rapid, affordable creation of customized models for a range of end users.

摘要

天气预报对于一系列人类活动至关重要,包括交通运输、农业和工业,以及公众安全。机器学习通过用神经网络取代数值求解器来变革数值天气预报(NWP),提高了预测流程中预测组件的速度和准确性。然而,当前模型在初始化和生成局部预报时依赖数值系统,从而限制了它们可实现的收益。在此我们表明,一个单一的机器学习模型可以取代整个NWP流程。土豚天气(Aardvark Weather)是一个端到端的数据驱动型天气预报系统,它摄取观测数据并生成全球网格预报和本地站点预报。对于多个变量和提前期,全球预报优于一个业务性NWP基线。本地站点预报在长达十天的提前期内都很有技巧性,可与经过后处理的全球NWP基线以及一个有人类预报员输入的最先进端到端预报系统相媲美。端到端调整进一步提高了本地预报的准确性。我们的结果表明,在部署时不依赖NWP也有可能进行有技巧的预报,这将实现数据驱动模型的全部速度和准确性优势。我们相信,土豚天气将成为新一代端到端模型的起点,这些模型将把计算成本降低几个数量级,并能够为一系列终端用户快速、经济地创建定制模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a6e/12119340/9f13dd62fe0d/41586_2025_8897_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验