Suppr超能文献

用于人工智能集成评估人表皮生长因子受体2(HER2)双明场原位杂交在乳腺癌中应用的扫描协议优化

Optimization of Scanning Protocol for AI-Integrated Assessment of HER2 Dual Bright-Field In-Situ Hybridization Application in Breast Cancer.

作者信息

Bakoglu Malinowski Nilay, Ohnishi Takashi, Cesmecioglu Emine, Ross Dara S, Tsukamoto Tetsuya, Yagi Yukako

机构信息

Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

Department of Pathology, Faculty of Medicine, Istanbul Medipol University, 34214 Istanbul, Turkey.

出版信息

Bioengineering (Basel). 2025 May 26;12(6):569. doi: 10.3390/bioengineering12060569.

Abstract

Accurately determining HER2 status is essential for breast cancer treatment. We developed an AI-integrated in-house application for automated Dual bright-field (BF) in situ hybridization (ISH) analysis on whole slide images (WSIs), although optimal scanning conditions remain unclear. We evaluated scanners and optimized scanning protocols for clinical application. Ten de-identified invasive breast carcinoma cases, with HER2 immunohistochemistry and FISH results, were analyzed using three scanners and six scanning protocols. WSIs scanned by Scanner 'A' have 0.12 µm/pixel with 0.95 NA (A1) and 1.2 NA (A2); Scanner 'B' have 0.08 µm/pixel (B1); 0.17 µm/pixel (B2); and 0.17 µm/pixel with extended focus (1.4 µm step size and three layers) (B3); Scanner 'C' has 0.26 µm/pixel (C1) resolution. Results showed scanning protocols A1, A2, B2, and B3 yielded HER2 gene amplification status and ASCO/CAP ISH group results consistent with manual FISH as the ground truth. However, protocol C demonstrated poor concordance due to nuclei detection failure in six cases. The AI-integrated application achieved the best performance using scanning protocols with optimized resolutions of 0.12 µm/pixel and 0.17 µm/pixel with extended focus. This study highlights the importance of scanner selection in AI-based HER2 assessment and demonstrates that optimized scanning parameters enhance the accuracy and reliability of automated Dual BF ISH analysis.

摘要

准确确定HER2状态对于乳腺癌治疗至关重要。我们开发了一种集成人工智能的内部应用程序,用于在全玻片图像(WSIs)上进行自动双明场(BF)原位杂交(ISH)分析,尽管最佳扫描条件仍不明确。我们评估了扫描仪并优化了临床应用的扫描方案。使用三台扫描仪和六种扫描方案对十例经去识别处理的浸润性乳腺癌病例进行了分析,这些病例均有HER2免疫组化和FISH结果。由扫描仪“A”扫描的WSIs,其分辨率为0.12 µm/像素,数值孔径为0.95(A1)和1.2(A2);扫描仪 “B” 的分辨率为0.08 µm/像素(B1);0.17 µm/像素(B2);以及0.17 µm/像素且具有扩展焦点(步长1.4 µm,共三层)(B3);扫描仪 “C” 的分辨率为0.26 µm/像素(C1)。结果显示,扫描方案A1、A2、B2和B3得出的HER2基因扩增状态以及ASCO/CAP ISH组结果与作为金标准的手动FISH结果一致。然而,方案C由于六例病例的细胞核检测失败而显示出较差的一致性。集成人工智能的应用程序在使用分辨率为0.12 µm/像素和0.17 µm/像素且具有扩展焦点的优化扫描方案时表现最佳。本研究强调了在基于人工智能的HER2评估中选择扫描仪的重要性,并表明优化的扫描参数可提高自动双BF ISH分析的准确性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0669/12190017/7ee19274b805/bioengineering-12-00569-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验