Suppr超能文献

基于 CISH 全切片图像的用于自动定量的单一核分割。

Singular Nuclei Segmentation for Automatic Quantification Using CISH Whole Slide Images.

机构信息

Department of CS, American International University-Bangladesh, Dhaka 1229, Bangladesh.

RIoT Research Center, Independent University, Bangladesh, Dhaka 1229, Bangladesh.

出版信息

Sensors (Basel). 2022 Sep 28;22(19):7361. doi: 10.3390/s22197361.

Abstract

Human epidermal growth factor receptor 2 () quantification is performed routinely for all breast cancer patients to determine their suitability for -targeted therapy. Fluorescence in situ hybridization (FISH) and chromogenic in situ hybridization (CISH) are the US Food and Drug Administration (FDA) approved tests for quantification in which at least 20 cancer-affected singular nuclei are quantified for grading. CISH is more advantageous than FISH for cost, time and practical usability. In clinical practice, nuclei suitable for quantification are selected manually by pathologists which is time-consuming and laborious. Previously, a method was proposed for automatic quantification using a support vector machine (SVM) to detect suitable singular nuclei from CISH slides. However, the SVM-based method occasionally failed to detect singular nuclei resulting in inaccurate results. Therefore, it is necessary to develop a robust nuclei detection method for reliable automatic quantification. In this paper, we propose a robust U-net-based singular nuclei detection method with complementary color correction and deconvolution adapted for accurate grading using CISH whole slide images (WSIs). The efficacy of the proposed method was demonstrated for automatic quantification during a comparison with the SVM-based approach.

摘要

人表皮生长因子受体 2 () 定量分析常规应用于所有乳腺癌患者,以确定其是否适合进行 - 靶向治疗。荧光原位杂交 (FISH) 和显色原位杂交 (CISH) 是美国食品和药物管理局 (FDA) 批准的用于 定量分析的检测方法,其中至少需要对 20 个癌细胞核进行计数以进行分级。CISH 在成本、时间和实际可用性方面比 FISH 更具优势。在临床实践中,病理学家手动选择适合进行 定量分析的细胞核,这既耗时又费力。此前,曾提出一种使用支持向量机 (SVM) 从 CISH 载玻片上自动检测合适的单个细胞核的自动 定量分析方法。然而,基于 SVM 的方法偶尔无法检测到单个细胞核,导致结果不准确。因此,有必要开发一种稳健的细胞核检测方法,以实现可靠的自动 定量分析。在本文中,我们提出了一种基于 U-Net 的稳健的单个细胞核检测方法,该方法具有互补颜色校正和反卷积功能,适用于使用 CISH 全切片图像 (WSI) 进行准确的分级。通过与基于 SVM 的方法进行比较,证明了该方法在自动 定量分析中的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a5e/9571354/03d5fcfe14c9/sensors-22-07361-g009.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验