Suppr超能文献

使用基于机器学习的无标记运动捕捉系统估计步行过程中的三维地面反作用力和压力中心

Estimation of Three-Dimensional Ground Reaction Force and Center of Pressure During Walking Using a Machine-Learning-Based Markerless Motion Capture System.

作者信息

Feng Ru, Ugbolue Ukadike Christopher, Yang Chen, Liu Hui

机构信息

School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China.

School of Health and Life Sciences, University of the West of Scotland, South Lanarkshire, Hamilton G72 0LH, UK.

出版信息

Bioengineering (Basel). 2025 May 29;12(6):588. doi: 10.3390/bioengineering12060588.

Abstract

OBJECTIVE

We developed two neural network models to estimate the three-dimensional ground reaction force (GRF) and center of pressure (COP) based on marker trajectories obtained from a markerless motion capture system.

METHODS

Gait data were collected using two cameras and three force plates. Each gait dataset contained kinematic data and kinetic data from the stance phase. A multi-layer perceptron (MLP) and convolutional neural network (CNN) were constructed to estimate each component of GRF and COP based on the three-dimensional trajectories of the markers. A total of 100 samples were randomly selected as the test set, and the estimation performance was evaluated using the correlation coefficient (r) and relative root mean square error (rRMSE).

RESULTS

The r-values for MLP in each GRF component ranged from 0.918 to 0.989, with rRMSEs between 5.06% and 12.08%. The r-values for CNN in each GRF component ranged from 0.956 to 0.988, with rRMSEs between 6.03-9.44%. For the COP estimation, the r-values for MLP ranged from 0.727 to 0.982, with rRMSEs between 6.43% and 27.64%, while the r-values for CNN ranged from 0.896 to 0.977, with rRMSEs between 6.41% and 7.90%.

CONCLUSIONS

It is possible to estimate GRF and COP from markerless motion capture data. This approach provides an alternative method for measuring kinetic parameters without force plates during gait analysis.

摘要

目的

我们开发了两种神经网络模型,用于基于从无标记运动捕捉系统获得的标记轨迹来估计三维地面反作用力(GRF)和压力中心(COP)。

方法

使用两台摄像机和三个测力板收集步态数据。每个步态数据集包含站立期的运动学数据和动力学数据。构建了一个多层感知器(MLP)和卷积神经网络(CNN),以基于标记的三维轨迹来估计GRF和COP的每个分量。总共随机选择100个样本作为测试集,并使用相关系数(r)和相对均方根误差(rRMSE)评估估计性能。

结果

MLP在每个GRF分量中的r值范围为0.918至0.989,rRMSE在5.06%至12.08%之间。CNN在每个GRF分量中的r值范围为0.956至0.988,rRMSE在6.03 - 9.44%之间。对于COP估计,MLP的r值范围为0.727至0.982,rRMSE在6.43%至27.64%之间,而CNN的r值范围为0.896至0.977,rRMSE在6.41%至7.90%之间。

结论

从无标记运动捕捉数据估计GRF和COP是可行的。这种方法为步态分析期间在没有测力板的情况下测量动力学参数提供了一种替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05b0/12189434/1a5ba025e485/bioengineering-12-00588-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验