Silva Bruna, Domingos Marco, Amado Sandra, R Dias Juliana, Pascoal-Faria Paula, Maurício Ana C, Alves Nuno
Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal.
Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4200-465 Porto, Portugal.
Bioengineering (Basel). 2025 Jun 13;12(6):649. doi: 10.3390/bioengineering12060649.
Understanding the complex mechanical behavior of osteochondral tissues in silico is essential for improving experimental models and advancing research in joint health and degeneration. This review provides a comprehensive analysis of the constitutive models currently used to represent the different layers of the osteochondral region, from articular cartilage to subchondral bone, including intermediate regions such as the tidemark and the calcified cartilage layer. Each layer exhibits unique structural and mechanical properties, necessitating a layer-specific modeling approach. Through critical comparison of existing mathematical models, the viscoelastic model is suggested as a pragmatic starting point for modeling articular cartilage zones, the tidemark, and the calcified cartilage layer, as it captures essential time-dependent behaviors such as creep and stress relaxation while ensuring computational efficiency for initial coupling studies. On the other hand, a linear elastic model was identified as an optimal starting point for both the subchondral bone plate and the subchondral trabecular bone, reflecting their dense and stiff nature, and providing a coherent framework for early-stage multilayer integration. This layered modeling approach enables the development of physiologically coherent and computationally efficient representations of osteochondral region modeling. Furthermore, by establishing a layer-specific modeling approach, this review paves the way for modular in silico simulations through the coupling of computational models. Such an integrative framework supports scaffold design, in vitro experimentation, preclinical validation, and the mechanobiological exploration of osteochondral degeneration and repair. These efforts are essential for deepening our understanding of tissue responses under both physiological and pathological conditions. Ultimately, this work provides a robust theoretical foundation for future in silico and in vitro studies aimed at advancing osteochondral tissue regeneration strategies.
在计算机模拟中理解骨软骨组织复杂的力学行为对于改进实验模型以及推动关节健康与退变研究至关重要。本综述全面分析了当前用于描述骨软骨区域不同层(从关节软骨到软骨下骨)的本构模型,包括潮线和钙化软骨层等中间区域。每一层都表现出独特的结构和力学特性,因此需要采用特定于层的建模方法。通过对现有数学模型的批判性比较,建议将粘弹性模型作为模拟关节软骨区域、潮线和钙化软骨层的实用起点,因为它能够捕捉诸如蠕变和应力松弛等基本的时间依赖性行为,同时确保初始耦合研究的计算效率。另一方面,线性弹性模型被确定为软骨下骨板和软骨下小梁骨的最佳起点,反映了它们致密且坚硬的性质,并为早期多层整合提供了一个连贯的框架。这种分层建模方法能够开发出骨软骨区域建模的生理上连贯且计算高效的表示。此外,通过建立特定于层的建模方法,本综述为通过计算模型耦合进行模块化计算机模拟铺平了道路。这样一个综合框架支持支架设计、体外实验、临床前验证以及骨软骨退变和修复的力学生物学探索。这些努力对于深化我们对生理和病理条件下组织反应的理解至关重要。最终,这项工作为未来旨在推进骨软骨组织再生策略的计算机模拟和体外研究提供了坚实的理论基础。