Fiedler Alexander, Dadras Mehran, Drysch Marius, Schmidt Sonja Verena, Puscz Flemming, Reinkemeier Felix, Lehnhardt Marcus, Wallner Christoph
Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
Department of Plastic Surgery, Diakonieklinikum Hamburg, Hohe Weide 17, 20259 Hamburg, Germany.
Children (Basel). 2025 Jun 19;12(6):806. doi: 10.3390/children12060806.
: Pediatric sarcomas are a biologically diverse group of mesenchymal tumors associated with morbidity due to recurrence, despite aggressive multimodal treatment. Reliable predictors of early recurrence remain limited. This exploratory study aimed to identify clinical features associated with first tumor recurrence using a machine learning approach tailored to low-event settings. : We conducted a retrospective, single-center cohort study of 23 pediatric patients with histologically confirmed sarcoma. Forty-six baseline variables were extracted per patient, including clinical, histological, and comorbidity data. Tumor recurrence was the primary binary endpoint. A LASSO-regularized logistic regression model was developed using leave-one-out cross-validation (LOOCV) to identify the most informative predictors. Dimensionality reduction (PCA) and SHAP-value analyses were used to visualize patient clustering and interpret variable contributions. : The model identified a four-variable risk signature comprising histological grade, primary tumor width, arterial hypertension, and extremity localization. Each additional tumor grade or centimeter of width approximately doubled the odds of recurrence (OR 2.18 and 2.04, respectively). Hypertension and limb location were associated with a 1.7 and 1.9 odds ratio of recurrence, respectively. The model achieved a balanced accuracy of 0.61 ± 0.08 and AUROC of 0.47 ± 0.12, reflecting limited discriminative power. PCA mapping revealed distinct outlier patterns correlating with high-risk profiles. : Even in a small cohort, classical prognostic markers, such as tumor grade and size, retained predictive relevance, while hypertension emerged as a novel, potentially modifiable cofactor or indicator for recurrence. Although model performance was modest, the findings are hypothesis-generating and warrant validation in larger prospective datasets.
小儿肉瘤是一组生物学上具有多样性的间充质肿瘤,尽管采用了积极的多模式治疗,但仍因复发而导致发病。早期复发的可靠预测因素仍然有限。这项探索性研究旨在使用针对低事件发生率情况定制的机器学习方法,识别与首次肿瘤复发相关的临床特征。
我们对23例经组织学确诊的小儿肉瘤患者进行了一项回顾性单中心队列研究。每位患者提取了46个基线变量,包括临床、组织学和合并症数据。肿瘤复发是主要的二元终点。使用留一法交叉验证(LOOCV)开发了一个套索正则化逻辑回归模型,以识别最具信息量的预测因素。使用降维(PCA)和SHAP值分析来可视化患者聚类并解释变量贡献。
该模型确定了一个由组织学分级、原发肿瘤宽度、动脉高血压和肢体定位组成的四变量风险特征。每增加一个肿瘤分级或一厘米宽度,复发几率大约增加一倍(分别为OR 2.18和2.04)。高血压和肢体定位分别与1.7和1.9的复发比值比相关。该模型的平衡准确率为0.61±0.08,AUROC为0.47±0.12,反映出判别能力有限。PCA映射揭示了与高风险特征相关的明显异常模式。
即使在一个小队列中,经典的预后标志物,如肿瘤分级和大小,仍然具有预测相关性,而高血压则成为一种新的、可能可改变的复发辅助因素或指标。尽管模型性能一般,但这些发现能够生成假设,值得在更大的前瞻性数据集中进行验证。