Tao Defeng, Agor Joseph, McGregor Jessina, Douglass Trevor, Gibler Andrew, Vergara Hector A
School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, 224 Rogers Hall, Corvallis, OR 97331, USA.
Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, MD 20723, USA.
Healthcare (Basel). 2025 Jun 6;13(12):1368. doi: 10.3390/healthcare13121368.
The disparities observed in COVID-19 vaccine access at the early stages of vaccine distribution highlight the need for vaccine distribution plans that consider equitable access. Strategies to identify areas with low access to vaccines that use a single pre-specified distance or time as a threshold to define accessibility may not represent reality. We propose a novel mobility data-driven (MDD) definition to identify areas that have low access to the COVID-19 vaccine.
We collected geospatial mobility data for our MDD approach to determine areas of low access. We identified census tracts in Oregon with low access to the COVID-19 vaccine through two approaches-(1) an adapted United States Department of Agriculture (USDA) food desert definition and (2) our proposed MDD framework. Ten spatial and social measures of access were utilized to compare these two approaches.
Compered with USDA, low-access census tracts identified by the MDD definition have a lower spatial accessibility; higher rates of poverty, unemployment, uninsured individuals, and a population without high school diplomas; and a low per capita income. Moreover, we found that the proportion of older populations, as well as American Indian and Alaskan Native populations, as identified in the MDD low-access census tracts, is higher than that in the USDA definition.
We believe that the new proposed framework using mobility data can identify more representative areas that have low access to COVID-19 vaccines. Our proposed framework provides a starting point for achieving the goal of the equitable distribution of resources.
在疫苗分发的早期阶段观察到的新冠疫苗可及性差异凸显了制定考虑公平可及性的疫苗分发计划的必要性。使用单一预先指定的距离或时间作为定义可及性的阈值来识别疫苗可及性低的地区的策略可能并不反映实际情况。我们提出了一种新的基于移动性数据驱动(MDD)的定义来识别新冠疫苗可及性低的地区。
我们收集地理空间移动性数据用于我们的MDD方法以确定可及性低的地区。我们通过两种方法识别俄勒冈州新冠疫苗可及性低的普查区——(1)一种改编的美国农业部(USDA)食品沙漠定义和(2)我们提出的MDD框架。利用十种空间和社会可及性指标来比较这两种方法。
与美国农业部的定义相比,通过MDD定义识别出的可及性低的普查区具有更低的空间可及性;更高的贫困率、失业率、未参保率以及没有高中文凭的人口比例;以及更低的人均收入。此外,我们发现MDD可及性低的普查区中老年人以及美国印第安人和阿拉斯加原住民人口的比例高于美国农业部定义中的比例。
我们认为新提出的使用移动性数据的框架能够识别出更具代表性的新冠疫苗可及性低的地区。我们提出的框架为实现资源公平分配的目标提供了一个起点。