Suppr超能文献

使用深度学习算法从骨盆X光片中确定骶髂关节炎的存在。

Using the Deep Learning Algorithm to Determine the Presence of Sacroiliitis from Pelvic Radiographs.

作者信息

Wang Ming Xing, Kim Jeoung Kun, Park Donghwi, Chang Min Cheol

机构信息

College of Economics and Management, Wenzhou University of Technology, Wenzhou 325000, China.

Department of Business Administration, School of Business, Yeungnam University, Gyeongsan-si 38541, Republic of Korea.

出版信息

Life (Basel). 2025 May 29;15(6):876. doi: 10.3390/life15060876.

Abstract

Deep learning (DL) techniques have demonstrated remarkable capabilities in recognizing complex patterns in medical imaging data. In recent years, DL has been increasingly applied in clinical medicine for disease diagnosis and progression prediction. This study aimed to develop and validate a DL model for detecting sacroiliitis using pelvic anteroposterior (AP) radiographs. We retrospectively analyzed 1853 patients with pelvic AP radiographs, including 3706 sacroiliac joints (SIJs). Pelvic AP radiographs served as input data for the DL model development, while the presence or absence of sacroiliitis confirmed by pelvic computed tomography (CT) was used as the reference standard output data. Based on CT findings, 1463 of 1853 right SIJs showed evidence of sacroiliitis, while 390 had no sacroiliitis. Similar findings were observed in the left SIJs. The dataset was split with 70% (1297 images) for training and 30% (556 images) for validation. The areas under the curve (AUC) for our DL model on the validation dataset were 0.871 (95% confidence interval (CI): 0.834-0.907) and 0.869 (95% CI: 0.834-0.907) for the left and right SIJs, respectively. Diagnostic accuracies for sacroiliitis on the left and right sides were 85.4% and 86.3%, respectively. These results demonstrate that a DL model trained on pelvic AP radiographs with CT-confirmed diagnoses can effectively aid in the diagnosis of sacroiliitis.

摘要

深度学习(DL)技术在识别医学影像数据中的复杂模式方面已展现出卓越能力。近年来,DL在临床医学中越来越多地应用于疾病诊断和病情进展预测。本研究旨在开发并验证一种使用骨盆前后位(AP)X线片检测骶髂关节炎的DL模型。我们回顾性分析了1853例有骨盆AP X线片的患者,包括3706个骶髂关节(SIJ)。骨盆AP X线片用作DL模型开发的输入数据,而经骨盆计算机断层扫描(CT)确认的骶髂关节炎的有无用作参考标准输出数据。根据CT结果,1853个右侧SIJ中有1463个显示出骶髂关节炎的证据,而390个没有骶髂关节炎。左侧SIJ也观察到类似结果。数据集按70%(1297张图像)用于训练和30%(556张图像)用于验证进行划分。我们的DL模型在验证数据集上,左侧和右侧SIJ的曲线下面积(AUC)分别为0.871(95%置信区间(CI):0.834 - 0.907)和0.869(95% CI:0.834 - 0.907)。骶髂关节炎在左侧和右侧的诊断准确率分别为85.4%和86.3%。这些结果表明,基于经CT确诊的骨盆AP X线片训练的DL模型可有效辅助骶髂关节炎的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/387f/12193810/a7f5178690f6/life-15-00876-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验