Suppr超能文献

术前分级、T 分期和淋巴结受累评估:基于机器学习的结肠癌 CT 纹理分析。

Preoperative assessment of grade, T stage, and lymph node involvement: machine learning-based CT texture analysis in colon cancer.

机构信息

Department of Radiology, Ministry of Health Recep Tayyip Erdoğan University Training and Research Hospital, Rize, Turkey.

Department of Radiology, Ministry of Health Ankara Training and Research Hospital, Ankara, Turkey.

出版信息

Jpn J Radiol. 2024 Mar;42(3):300-307. doi: 10.1007/s11604-023-01502-2. Epub 2023 Oct 24.

Abstract

PURPOSE

To investigate whether texture analysis of primary colonic mass in preoperative abdominal computed tomography (CT) scans of patients diagnosed with colon cancer could predict tumor grade, T stage, and lymph node involvement using machine learning (ML) algorithms.

MATERIALS AND METHODS

This retrospective study included 73 patients diagnosed with colon cancer. Texture features were extracted from contrast-enhanced CT images using LifeX software. First, feature reduction was performed by two radiologists through reproducibility analysis. Using the analysis of variance method, the parameters that best predicted lymph node involvement, grade, and T stage were determined. The predictive performance of these parameters was assessed using Orange software with the k-nearest neighbor (kNN), random forest, gradient boosting, and neural network models, and their area under the curve values were calculated.

RESULTS

There was excellent reproducibility between the two radiologists in terms of 49 of the 58 texture parameters that were subsequently subject to further analysis. Considering all four ML algorithms, the mean AUC and accuracy ranges were 0.557-0.800 and 47-76%, respectively, for the prediction of lymph node involvement; 0.666-0.846 and 68-77%, respectively, for the prediction of grade; and 0.768-0.962 and 81-88%, respectively, for the prediction of T stage. The best performance was achieved with the random forest model in the prediction of LN involvement, the kNN model for the prediction of grade, and the gradient boosting model for the prediction of T stage.

CONCLUSION

The results of this study suggest that the texture analysis of preoperative CT scans obtained for staging purposes in colon cancer can predict the presence of advanced-stage tumors, high tumor grade, and lymph node involvement with moderate specificity and sensitivity rates when evaluated using ML models.

摘要

目的

利用机器学习(ML)算法研究术前腹部 CT 扫描中诊断为结肠癌的原发性结肠肿块的纹理分析是否可以预测肿瘤分级、T 分期和淋巴结受累情况。

材料和方法

本回顾性研究纳入 73 例诊断为结肠癌的患者。使用 LifeX 软件从增强 CT 图像中提取纹理特征。首先,两位放射科医生通过可重复性分析进行特征降维。使用方差分析方法,确定了预测淋巴结受累、分级和 T 分期的最佳参数。使用 Orange 软件中的 k-近邻(kNN)、随机森林、梯度提升和神经网络模型评估这些参数的预测性能,并计算其曲线下面积值。

结果

在随后进行进一步分析的 58 个纹理参数中,有 49 个参数在两位放射科医生之间具有极好的可重复性。考虑到所有四个 ML 算法,预测淋巴结受累的平均 AUC 和准确率范围分别为 0.557-0.800 和 47-76%;预测分级的平均 AUC 和准确率范围分别为 0.666-0.846 和 68-77%;预测 T 分期的平均 AUC 和准确率范围分别为 0.768-0.962 和 81-88%。随机森林模型在预测淋巴结受累方面表现最佳,kNN 模型在预测分级方面表现最佳,梯度提升模型在预测 T 分期方面表现最佳。

结论

本研究结果表明,术前 CT 扫描的纹理分析可用于结直肠癌的分期,使用 ML 模型评估时,其对高级别肿瘤、高肿瘤分级和淋巴结受累的存在具有中等特异性和敏感性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验