Suppr超能文献

深度学习识别青春期前易怒情绪相关的神经基质:一种用于功能磁共振成像的新型三维卷积神经网络应用

Deep learning identification of reward-related neural substrates of preadolescent irritability: A novel 3D CNN application for fMRI.

作者信息

Walker Johanna C, Swineford Conner, Patel Krupali R, Dougherty Lea R, Wiggins Jillian Lee

机构信息

Joint Doctoral Program in Clinical Psychology, San Diego State University/University of California, San Diego, San Diego, CA, USA.

Department of Psychology, San Diego State University, San Diego, CA, USA.

出版信息

Neuroimage Rep. 2025 Apr 14;5(2):100259. doi: 10.1016/j.ynirp.2025.100259. eCollection 2025 Jun.

Abstract

The recent emergence of deep learning methods, particularly convolutional neural networks (CNNs), applied to fMRI data presents a promising avenue in psychiatry research, offering advantages over traditional analyses by requiring minimal assumptions and enabling detection of higher-level patterns and intricate, nonlinear relationships within inherently complex fMRI data. Irritability, defined as a lowered threshold for angry responses to blocked rewards, is a promising neurodevelopmental marker for mental health risk due to its robust, transdiagnostic predictive power in youth. In this study, data from the Adolescent Brain and Cognitive Development (ABCD) baseline sample ( = 6065) were utilized for a novel application of a 3D CNN to whole-brain fMRI data acquired during the reward anticipation period of the monetary incentive delay task to predict parent-reported youth irritability severity, measured dimensionally. Regression activation mapping (RAM) was employed to extract feature maps of brain regions most predictive of irritability severity from the model. The model demonstrated satisfactory accuracy, with a mean squared error (MSE) of 1.82, and predicted irritability severity scores with a mean absolute error (MAE) of 0.48 ± 1.54 SD from the true scores. Notably, feature maps revealed bilateral representation of key regions implicated in emotional response and reward processing, including the caudate nucleus, amygdala, parahippocampal gyrus, and hippocampus. This study underscores the potential for 3D CNNs to predict significant, dimensional clinical outcomes such as irritability severity using fMRI data.

摘要

深度学习方法,尤其是卷积神经网络(CNN),最近应用于功能磁共振成像(fMRI)数据,为精神病学研究提供了一条有前景的途径,与传统分析相比具有优势,因为它所需的假设最少,能够检测固有复杂的fMRI数据中的高级模式以及复杂的非线性关系。易怒被定义为对受阻奖励产生愤怒反应的阈值降低,由于其在青少年中具有强大的跨诊断预测能力,因此是一种很有前景的心理健康风险神经发育标志物。在本研究中,来自青少年大脑与认知发展(ABCD)基线样本(n = 6065)的数据被用于将三维卷积神经网络(3D CNN)新颖地应用于在金钱激励延迟任务的奖励预期期获取的全脑功能磁共振成像数据,以预测父母报告的青少年易怒严重程度(采用维度测量)。使用回归激活映射(RAM)从模型中提取最能预测易怒严重程度的脑区特征图。该模型显示出令人满意的准确性,均方误差(MSE)为1.82,并以平均绝对误差(MAE)0.48±1.54标准差预测易怒严重程度得分,与真实得分相比。值得注意的是,特征图揭示了与情绪反应和奖励处理相关的关键区域的双侧表征,包括尾状核、杏仁核、海马旁回和海马体。这项研究强调了三维卷积神经网络利用功能磁共振成像数据预测易怒严重程度等重要的维度临床结果的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8bd/12172733/94cc7d8f0e44/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验