Suppr超能文献

在云环境中通过动态优化和字符级深度学习增强网络钓鱼检测

Enhancing phishing detection with dynamic optimization and character-level deep learning in cloud environments.

作者信息

Ravula Vishnukumar, Ramaiah Mangayarkarasi

机构信息

School of Computer Science Engineering and Information Systems (SCORE), Vellore Institute of Technology University, Vellore, Tamil Nadu, India.

出版信息

PeerJ Comput Sci. 2025 May 19;11:e2640. doi: 10.7717/peerj-cs.2640. eCollection 2025.

Abstract

As cloud computing becomes increasingly prevalent, the detection and prevention of phishing URL attacks are essential, particularly in the Internet of Vehicles (IoV) environment, to maintain service reliability. In such a scenario, an attacker could send misleading phishing links, potentially compromising the system's functionality or, at worst, leading to a complete shutdown. To address these emerging threats, this study introduces a novel Dynamic Arithmetic Optimization Algorithm with Deep Learning-Driven Phishing URL Classification (DAOA-DLPC) model for cloud-enabled IoV infrastructure. The candidate's research utilizes character-level embeddings instead of word embeddings, as the former can capture intricate URL patterns more effectively. These embeddings are integrated with a deep learning model, the Multi-Head Attention and Bidirectional Gated Recurrent Units (MHA-BiGRU). To improve precision, hyperparameter tuning has been done using DAOA. The proposed method offers a feasible solution for identifying the phishing URLs, and the method achieves computational efficiency through the attention mechanism and dynamic hyperparameter optimization. The need for this work comes from the observation that the traditional machine learning approaches are not effective in dynamic environments like phishing threat landscapes in a dynamic environment such as the one of phishing threats. The presented DLPC approach is capable of learning new forms of phishing attacks in real time and reduce false positives. The experimental results show that the proposed DAOA-DLPC model outperforms the other models with an accuracy of 98.85%, recall of 98.49%, and F1-score of 98.38% and can effectively detect safe and phishing URLs in dynamic environments. These results imply that the proposed model is useful in distinguishing between safe and unsafe URLs than the conventional models.

摘要

随着云计算日益普及,检测和防范网络钓鱼URL攻击至关重要,尤其是在车联网(IoV)环境中,以维护服务可靠性。在这种情况下,攻击者可能会发送误导性的网络钓鱼链接,这可能会损害系统功能,或者在最坏的情况下导致系统完全关闭。为应对这些新出现的威胁,本研究针对支持云的车联网基础设施引入了一种新颖的具有深度学习驱动的网络钓鱼URL分类的动态算术优化算法(DAOA-DLPC)模型。该候选人的研究使用字符级嵌入而非词嵌入,因为前者能更有效地捕捉复杂的URL模式。这些嵌入与深度学习模型多头注意力和双向门控循环单元(MHA-BiGRU)相结合。为提高精度,使用DAOA进行了超参数调整。所提出的方法为识别网络钓鱼URL提供了一种可行的解决方案,并且该方法通过注意力机制和动态超参数优化实现了计算效率。这项工作的需求源于观察到传统机器学习方法在动态环境(如网络钓鱼威胁态势)中效果不佳。所提出的DLPC方法能够实时学习新形式的网络钓鱼攻击并减少误报。实验结果表明,所提出的DAOA-DLPC模型以98.85%的准确率、98.49%的召回率和98.38%的F1分数优于其他模型,并且能够在动态环境中有效地检测安全和网络钓鱼URL。这些结果意味着所提出的模型在区分安全和不安全URL方面比传统模型更有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d1/12190431/8a242c075ef4/peerj-cs-11-2640-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验