Suppr超能文献

使用带有自我中心视觉的目标导向注意力网络进行社交感知轨迹预测。

Social-aware trajectory prediction using goal-directed attention networks with egocentric vision.

作者信息

Astuti Lia, Chiu Chui-Hong, Lin Yu-Chen, Lin Ming-Chih

机构信息

Automatic Control Engineering, Feng Chia University, Taichung, Taiwan.

出版信息

PeerJ Comput Sci. 2025 Apr 25;11:e2842. doi: 10.7717/peerj-cs.2842. eCollection 2025.

Abstract

This study presents a novel social-goal attention networks (SGANet) model that employs a vision-based multi-stacked neural network framework to predict multiple future trajectories for both homogeneous and heterogeneous road users. Unlike existing methods that focus solely on one dataset type and treat social interactions, temporal dynamics, destination point, and uncertainty behaviors independently, SGANet integrates these components into a unified multimodal prediction framework. A graph attention network (GAT) captures socially-aware interaction correlation, a long short-term memory (LSTM) network encodes temporal dependencies, a goal-directed forecaster (GDF) estimates coarse future goals, and a conditional variational autoencoder (CVAE) generates multiple plausible trajectories, with multi-head attention (MHA) and feed-forward networks (FFN) refining the final multimodal trajectory prediction. Evaluations on homogeneous datasets (JAAD and PIE) and the heterogeneous TITAN dataset demonstrate that SGANet consistently outperforms previous benchmarks across varying prediction horizons. Extensive experiments highlight the critical role of socially-aware interaction weighting in capturing road users' influence on ego-vehicle maneuvers while validating the effectiveness of each network component, thereby demonstrating the advantages of multi-stacked neural network integration for trajectory prediction. The dataset is available at https://usa.honda-ri.com/titan.

摘要

本研究提出了一种新颖的社会目标注意力网络(SGANet)模型,该模型采用基于视觉的多层神经网络框架来预测同质和异质道路使用者的多个未来轨迹。与现有方法不同,现有方法仅专注于一种数据集类型,并独立处理社会交互、时间动态、目的地以及不确定行为,而SGANet将这些组件集成到一个统一的多模态预测框架中。图注意力网络(GAT)捕捉具有社会意识的交互相关性,长短期记忆(LSTM)网络对时间依赖性进行编码,目标导向预测器(GDF)估计粗略的未来目标,条件变分自编码器(CVAE)生成多个合理轨迹,多头注意力(MHA)和前馈网络(FFN)对最终的多模态轨迹预测进行优化。在同质数据集(JAAD和PIE)以及异质TITAN数据集上的评估表明,在不同的预测范围内,SGANet始终优于先前的基准。大量实验突出了具有社会意识的交互加权在捕捉道路使用者对自我车辆操纵的影响方面的关键作用,同时验证了每个网络组件的有效性,从而证明了多层神经网络集成在轨迹预测方面的优势。该数据集可在https://usa.honda-ri.com/titan获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0a9/12192891/a36691f47a38/peerj-cs-11-2842-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验