Kamarul Aryffin Hazeeqah Amny, Bin Sahbudin Murtadha Arif, Ali Pitchay Sakinah, Abhalim Azni Haslizan, Sahbudin Ilfita
Faculty of Science and Technology, Universiti Sains Islam Malaysia, Nilai, Negeri Sembilan, Malaysia.
Institute of Applied Data Analytics, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei.
PeerJ Comput Sci. 2025 May 6;11:e2874. doi: 10.7717/peerj-cs.2874. eCollection 2025.
This research focuses on improving epidemic monitoring systems by incorporating advanced technologies to enhance the surveillance of diseases more effectively than before. Considering the drawbacks associated with surveillance methods in terms of time consumption and efficiency, issues highlighted in this study includes the integration of Artificial Intelligence (AI) in early detection, decision support and predictive modeling, big data analytics in data sharing, contact tracing and countering misinformation, Internet of Things (IoT) devices in real time disease monitoring and Geographic Information Systems (GIS) for geospatial artificial intelligence (GeoAI) applications and disease mapping. The increasing intricacy and regular occurrence of disease outbreaks underscore the pressing necessity for improvements in public health monitoring systems. This research delves into the developments and their utilization in detecting and handling infectious diseases while exploring how these progressions contribute to decision making and policy development, in public healthcare.
This review systematically analyzes how technological tools are being used in epidemic monitoring by conducting a structured search across online literature databases and applying eligibility criteria to identify relevant studies on current technological trends in public health surveillance.
The research reviewed 69 articles from 2019 to 2023 focusing on emerging trends in epidemic intelligence. Most of the studies emphasized the integration of artificial intelligence with technologies like big data analytics, geographic information systems, and the Internet of Things for monitoring infectious diseases.
The expansion of publicly accessible information on the internet has opened a new pathway for epidemic intelligence. This study emphasizes the importance of integrating information technology tools such as AI, big data analytics, GIS, and the IoT in epidemic intelligence surveillance to effectively track infectious diseases. Combining these technologies helps public health agencies in detecting and responding to health threats.
本研究致力于通过整合先进技术来改进疫情监测系统,以比以往更有效地加强疾病监测。鉴于现有监测方法在时间消耗和效率方面存在的缺陷,本研究突出的问题包括人工智能(AI)在早期检测、决策支持和预测建模中的整合,大数据分析在数据共享、接触者追踪和应对错误信息方面的应用,物联网(IoT)设备在实时疾病监测中的作用,以及地理信息系统(GIS)在地理空间人工智能(GeoAI)应用和疾病地图绘制中的应用。疾病爆发的复杂性日益增加且频繁发生,凸显了改进公共卫生监测系统的迫切必要性。本研究深入探讨了这些技术发展及其在检测和处理传染病方面的应用,同时探索这些进展如何有助于公共医疗保健中的决策制定和政策制定。
本综述通过在在线文献数据库中进行结构化搜索,并应用入选标准来识别有关公共卫生监测当前技术趋势的相关研究,系统地分析了技术工具在疫情监测中的应用方式。
该研究回顾了2019年至2023年期间关注疫情情报新兴趋势的69篇文章。大多数研究强调了人工智能与大数据分析、地理信息系统和物联网等技术的整合,用于监测传染病。
互联网上公开可用信息的扩展为疫情情报开辟了一条新途径。本研究强调了在疫情情报监测中整合人工智能、大数据分析、地理信息系统和物联网等信息技术工具以有效追踪传染病的重要性。结合这些技术有助于公共卫生机构检测和应对健康威胁。