Suppr超能文献

人工智能在公共卫生领域:疫情预警系统的潜力。

Artificial intelligence in public health: the potential of epidemic early warning systems.

机构信息

Biosecurity Program, The Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, Australia.

College of Public Service & Community Solutions, Arizona State University, Tempe, United States.

出版信息

J Int Med Res. 2023 Mar;51(3):3000605231159335. doi: 10.1177/03000605231159335.

Abstract

The use of artificial intelligence (AI) to generate automated early warnings in epidemic surveillance by harnessing vast open-source data with minimal human intervention has the potential to be both revolutionary and highly sustainable. AI can overcome the challenges faced by weak health systems by detecting epidemic signals much earlier than traditional surveillance. AI-based digital surveillance is an adjunct to-not a replacement of-traditional surveillance and can trigger early investigation, diagnostics and responses at the regional level. This narrative review focuses on the role of AI in epidemic surveillance and summarises several current epidemic intelligence systems including ProMED-mail, HealthMap, Epidemic Intelligence from Open Sources, BlueDot, Metabiota, the Global Biosurveillance Portal, Epitweetr and EPIWATCH. Not all of these systems are AI-based, and some are only accessible to paid users. Most systems have large volumes of unfiltered data; only a few can sort and filter data to provide users with curated intelligence. However, uptake of these systems by public health authorities, who have been slower to embrace AI than their clinical counterparts, is low. The widespread adoption of digital open-source surveillance and AI technology is needed for the prevention of serious epidemics.

摘要

利用人工智能(AI)从海量开源数据中进行最小干预的自动预警生成,有望具有变革性和高度可持续性。人工智能可以通过比传统监测更早地发现疫情信号,克服薄弱卫生系统面临的挑战。基于人工智能的数字监测是传统监测的补充,而不是替代,可以在区域层面触发早期调查、诊断和应对。本叙述性综述重点介绍了人工智能在疫情监测中的作用,并总结了目前的几个疫情智能系统,包括 ProMED-mail、HealthMap、Open Sources 中的疫情情报、BlueDot、Metabiota、全球生物监测门户、Epitweetr 和 EPIWATCH。并非所有这些系统都基于人工智能,有些系统仅对付费用户开放。大多数系统都有大量未经过滤的数据;只有少数系统可以对数据进行分类和过滤,为用户提供精选情报。然而,公共卫生当局对这些系统的采用率较低,他们比临床同行更慢地接受人工智能。为了预防严重的传染病,需要广泛采用数字开源监测和人工智能技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45af/10052500/d4c540ae0b23/10.1177_03000605231159335-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验