Suppr超能文献

使用归一化染色无关特征方法和FastAI-2对肺癌图像进行分类的高效深度学习模型

Efficient deep learning model for classifying lung cancer images using normalized stain agnostic feature method and FastAI-2.

作者信息

Saxena Pranshu, Singh Sanjay Kumar, Rashid Mamoon, Alshamrani Sultan S, Alnfiai Mrim M

机构信息

School of Computer Science Engineering and Technology, Bennett University, Greater Noida, India.

University School of Automation and Robotics, Guru Gobind Singh Indraprastha University, Delhi, India.

出版信息

PeerJ Comput Sci. 2025 May 27;11:e2903. doi: 10.7717/peerj-cs.2903. eCollection 2025.

Abstract

BACKGROUND

Lung cancer has the highest global fatality rate, with diagnosis primarily relying on histological tissue sample analysis. Accurate classification is critical for treatment planning and patient outcomes.

METHODS

This study develops a computer-assisted diagnosis system for non-small cell lung cancer histology classification, utilizing the FastAI-2 framework with a modified ResNet-34 architecture. The methodology includes stain normalization using LAB colour space for colour consistency, followed by deep learning-based classification. The proposed model is trained on the LC25000 dataset and compared with VGG11 and SqueezeNet1_1, demonstrating modified ResNet-34's optimal balance between depth and performance. FastAI-2 enhances computational efficiency, enabling rapid convergence with minimal training time.

RESULTS

The proposed system achieved 99.78% accuracy, confirming the effectiveness of automated lung cancer histopathology classification. This study highlights the potential of artificial intelligence (AI)-driven diagnostic tools to assist pathologists by improving accuracy, reducing workload, and enhancing decision-making in clinical settings.

摘要

背景

肺癌是全球死亡率最高的癌症,其诊断主要依赖于组织学组织样本分析。准确分类对于治疗方案规划和患者预后至关重要。

方法

本研究开发了一种用于非小细胞肺癌组织学分类的计算机辅助诊断系统,利用带有改进型ResNet-34架构的FastAI-2框架。该方法包括使用LAB颜色空间进行染色归一化以实现颜色一致性,然后进行基于深度学习的分类。所提出的模型在LC25000数据集上进行训练,并与VGG11和SqueezeNet1_1进行比较,证明了改进型ResNet-34在深度和性能之间的最佳平衡。FastAI-2提高了计算效率,能够在最短的训练时间内实现快速收敛。

结果

所提出的系统准确率达到99.78%,证实了自动化肺癌组织病理学分类的有效性。本研究强调了人工智能(AI)驱动的诊断工具在临床环境中通过提高准确性、减轻工作量和增强决策制定来协助病理学家的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1bd7/12192963/55f1425c897c/peerj-cs-11-2903-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验