Suppr超能文献

基于车对车(V2V)和云计算通信的交叉碰撞预测与预防

Intersection collision prediction and prevention based on vehicle-to-vehicle (V2V) and cloud computing communication.

作者信息

Zeng Min, Mohamad Hashim Mohd Sani, Ayob Mohd Nasir, Ismail Abdul Halim, Zang Qiling

机构信息

Mechanical Department, Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia.

School of Mechanical and Vehicle Engineering, Nanchang Institute of Science and Technology, Nanchang, Jiangxi, China.

出版信息

PeerJ Comput Sci. 2025 May 9;11:e2846. doi: 10.7717/peerj-cs.2846. eCollection 2025.

Abstract

In modern transportation systems, the management of traffic safety has become increasingly critical as both the number and complexity of vehicles continue to rise. These systems frequently encounter multiple challenges. Consequently, the effective assessment and management of collision risks in various scenarios within transportation systems are paramount to ensuring traffic safety and enhancing road utilization efficiency. In this paper, we tackle the issue of intelligent traffic collision prediction and propose a vehicle collision risk prediction model based on vehicle-to-vehicle (V2V) communication and the graph attention network (GAT). Initially, the framework gathers vehicle trajectory, speed, acceleration, and relative position information V2V communication technology to construct a graph representation of the traffic environment. Subsequently, the GAT model extracts interaction features between vehicles and optimizes the vehicle driving strategy through deep reinforcement learning (DRL), thereby augmenting the model's decision-making capabilities. Experimental results demonstrate that the framework achieves over 80% collision recognition accuracy concerning true warning rate on both public and real-world datasets. The metrics for false detection are thoroughly analyzed, revealing the efficacy and robustness of the proposed framework. This method introduces a novel technological approach to collision prediction in intelligent transportation systems and holds significant implications for enhancing traffic safety and decision-making efficiency.

摘要

在现代交通系统中,随着车辆数量和复杂性不断增加,交通安全管理变得越来越关键。这些系统经常面临多重挑战。因此,有效评估和管理交通系统中各种场景下的碰撞风险对于确保交通安全和提高道路利用效率至关重要。在本文中,我们解决智能交通碰撞预测问题,并提出一种基于车对车(V2V)通信和图注意力网络(GAT)的车辆碰撞风险预测模型。首先,该框架通过V2V通信技术收集车辆轨迹、速度、加速度和相对位置信息,以构建交通环境的图表示。随后,GAT模型提取车辆之间的交互特征,并通过深度强化学习(DRL)优化车辆驾驶策略,从而增强模型的决策能力。实验结果表明,该框架在公共数据集和真实世界数据集上的真实警告率方面实现了超过80%的碰撞识别准确率。对误检指标进行了全面分析,揭示了所提出框架的有效性和鲁棒性。该方法为智能交通系统中的碰撞预测引入了一种新颖的技术方法,对提高交通安全和决策效率具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f729/12193021/f5cfb54f79b5/peerj-cs-11-2846-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验