Suppr超能文献

利用机器学习通过步态测量检测帕金森病

Detecting Parkinson's Disease through Gait Measures Using Machine Learning.

作者信息

Li Alex, Li Chenyu

机构信息

Stanford Center for Professional Development, Stanford University, Stanford, CA 94305, USA.

Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA.

出版信息

Diagnostics (Basel). 2022 Oct 3;12(10):2404. doi: 10.3390/diagnostics12102404.

Abstract

Parkinson's disease (PD) is one of the most common long-term degenerative movement disorders that affects the motor system. This progressive nervous system disorder affects nearly one million Americans, and more than 20,000 new cases are diagnosed each year. PD is a chronic and progressive painful neurological disorder and usually people with PD live 10 to 20 years after being diagnosed. PD is diagnosed based on the identification of motor signs of bradykinesia, rigidity, tremor, and postural instability. Though several attempts have been made to develop explicit diagnostic criteria, this is still largely unrevealed. In this manuscript, we aim to build a classifier with gait data from Parkinson patients and healthy controls using machine learning methods. The classifier could help facilitate a more accurate and cost-effective diagnostic method. The input to our algorithm is the Gait in Parkinson's Disease dataset published on PhysioNet containing force sensor data as the measurement of gait from 92 healthy subjects and 214 patients with idiopathic Parkinson's Disease. Different machine learning methods, including logistic regression, SVM, decision tree, KNN were tested to output a predicted classification of Parkinson patients and healthy controls. Baseline models including frequency domain method can reach similar performance and may be another good approach for the PD diagnostics.

摘要

帕金森病(PD)是最常见的影响运动系统的长期退行性运动障碍之一。这种进行性神经系统疾病影响着近100万美国人,每年有超过2万例新病例被诊断出来。PD是一种慢性进行性疼痛性神经疾病,通常PD患者在被诊断后能活10到20年。PD的诊断基于对运动迟缓、僵硬、震颤和姿势不稳等运动体征的识别。尽管已经多次尝试制定明确的诊断标准,但在很大程度上仍未明确。在本手稿中,我们旨在使用机器学习方法,根据帕金森病患者和健康对照的步态数据构建一个分类器。该分类器有助于促进一种更准确且具有成本效益的诊断方法。我们算法的输入是在PhysioNet上发布的帕金森病步态数据集,其中包含力传感器数据,作为92名健康受试者和214名特发性帕金森病患者的步态测量值。测试了不同的机器学习方法,包括逻辑回归、支持向量机、决策树、K近邻算法,以输出帕金森病患者和健康对照的预测分类。包括频域法在内的基线模型可以达到相似的性能,可能是PD诊断的另一种好方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2ff/9600300/fc086128a78c/diagnostics-12-02404-g002.jpg

相似文献

1
Detecting Parkinson's Disease through Gait Measures Using Machine Learning.
Diagnostics (Basel). 2022 Oct 3;12(10):2404. doi: 10.3390/diagnostics12102404.
6
Use of machine learning method on automatic classification of motor subtype of Parkinson's disease based on multilevel indices of rs-fMRI.
Parkinsonism Relat Disord. 2021 Sep;90:65-72. doi: 10.1016/j.parkreldis.2021.08.003. Epub 2021 Aug 11.
7
Detecting Sensitive Mobility Features for Parkinson's Disease Stages Via Machine Learning.
Mov Disord. 2021 Sep;36(9):2144-2155. doi: 10.1002/mds.28631. Epub 2021 May 6.
8
Performance of machine learning methods in diagnosing Parkinson's disease based on dysphonia measures.
Biomed Eng Lett. 2017 Oct 12;8(1):29-39. doi: 10.1007/s13534-017-0051-2. eCollection 2018 Feb.

引用本文的文献

1
Applications of machine learning for computer-aided diagnosis of Parkinson's disease: progress and benchmark case study.
Artif Intell Rev. 2025;58(11):357. doi: 10.1007/s10462-025-11347-y. Epub 2025 Aug 29.
2
Remote AI Screening for Parkinson's Disease: A Multimodal, Cross-Setting Validation Study.
Res Sq. 2025 Jun 26:rs.3.rs-6844936. doi: 10.21203/rs.3.rs-6844936/v1.
3
Vision-based approach to knee osteoarthritis and Parkinson's disease detection utilizing human gait patterns.
PeerJ Comput Sci. 2025 May 6;11:e2857. doi: 10.7717/peerj-cs.2857. eCollection 2025.
6
Brain disease research based on functional magnetic resonance imaging data and machine learning: a review.
Front Neurosci. 2023 Aug 17;17:1227491. doi: 10.3389/fnins.2023.1227491. eCollection 2023.

本文引用的文献

1
Self-normalized Classification of Parkinson's Disease DaTscan Images.
Proceedings (IEEE Int Conf Bioinformatics Biomed). 2021 Dec;2021:1205-1212. doi: 10.1109/bibm52615.2021.9669820.
3
Dynamic Tremor in a Patient With Parkinson Disease.
JAMA Neurol. 2021 Aug 1;78(8):1015. doi: 10.1001/jamaneurol.2021.1431.
4
Challenges in the diagnosis of Parkinson's disease.
Lancet Neurol. 2021 May;20(5):385-397. doi: 10.1016/S1474-4422(21)00030-2.
6
Machine Learning Approaches in Parkinson's Disease.
Curr Med Chem. 2021;28(32):6548-6568. doi: 10.2174/0929867328999210111211420.
7
Early diagnosis of Parkinson's disease using machine learning algorithms.
Med Hypotheses. 2020 May;138:109603. doi: 10.1016/j.mehy.2020.109603. Epub 2020 Jan 27.
8
Finding missed cases of familial hypercholesterolemia in health systems using machine learning.
NPJ Digit Med. 2019 Apr 11;2:23. doi: 10.1038/s41746-019-0101-5. eCollection 2019.
9
Serum N-Glycosylation in Parkinson's Disease: A Novel Approach for Potential Alterations.
Molecules. 2019 Jun 13;24(12):2220. doi: 10.3390/molecules24122220.
10
Assisted Diagnosis of Parkinsonism Based on the Striatal Morphology.
Int J Neural Syst. 2019 Nov;29(9):1950011. doi: 10.1142/S0129065719500114. Epub 2019 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验