Alabbadi Adel, Bajaber Fuad
Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Sensors (Basel). 2025 Jun 12;25(12):3693. doi: 10.3390/s25123693.
Due to domain variability and developing attack tactics, intrusion detection in heterogeneous and dynamic IoT systems is still a crucial challenge. For cross-domain intrusion detection, this paper proposes a novel algorithm, X-FuseRLSTM, a dual-path feature fusion framework that is attention guided and coupled with a residual LSTM architecture. The proposed algorithm is the combination of four major steps: first, feature extraction using deep encoder and sparse transformer; second, feature fusion of the extracted features and reducing the fused features; third, the classification model; and last, explainable artificial intelligence (XAI). The classification model used is a deep neural network and residual long short-term memory (RLSTM). The model effectively incorporates both spatial and temporal correlations in network traffic data, which improves its detection capability. The model predictions are explained using the XAI techniques. Extensive experiments on datasets including TON_IoT Network, NSL-KDD, and CICIoMT 2024 with both 19-class and 6-class variations show that X-FuseRLSTM achieves the highest accuracy of 99.40% on network, 99.72% on NSL-KDD, and 97.66% for 19-class and 98.05% for 6-class on CICIoMT 2024 datasets. The suggested method is appropriate for practical IoT security applications since it provides strong domain generalization and explainability while preserving computational efficiency.
由于域的可变性和不断发展的攻击策略,异构和动态物联网系统中的入侵检测仍然是一项严峻挑战。对于跨域入侵检测,本文提出了一种新颖的算法X-FuseRLSTM,它是一种双路径特征融合框架,由注意力引导并与残差LSTM架构相结合。所提出的算法由四个主要步骤组成:首先,使用深度编码器和稀疏变压器进行特征提取;其次,对提取的特征进行特征融合并减少融合后的特征;第三,分类模型;最后,可解释人工智能(XAI)。所使用的分类模型是深度神经网络和残差长短期记忆(RLSTM)。该模型有效地融合了网络流量数据中的空间和时间相关性,从而提高了其检测能力。使用XAI技术对模型预测进行解释。在包括TON_IoT网络、NSL-KDD和CICIoMT 2024的数据集上进行的广泛实验,其中数据集有19类和6类两种变体,结果表明X-FuseRLSTM在网络上的准确率最高达到99.40%,在NSL-KDD上为99.72%,在CICIoMT 2024数据集上,19类的准确率为97.66%,6类的准确率为98.05%。所建议的方法适用于实际的物联网安全应用,因为它在保持计算效率的同时提供了强大的域泛化能力和可解释性。