Suppr超能文献

基于脑电图的精神分裂症诊断:使用具有多尺度和自适应特征选择的深度学习方法

EEG-based schizophrenia diagnosis using deep learning with multi-scale and adaptive feature selection.

作者信息

Al Mazroa Alanoud, Eltahir Majdy M, Ebad Shouki A, Alotaibi Faiz Abdullah, K Venkatachalam, Cho Jaehyuk

机构信息

Department of Information Systems, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Department of Information Systems, King Khalid University, Abha, Saudi Arabia.

出版信息

PeerJ Comput Sci. 2025 May 12;11:e2811. doi: 10.7717/peerj-cs.2811. eCollection 2025.

Abstract

Schizophrenia is a chronic and severe mental illness that significantly impacts the daily lives and work of those affected. Unfortunately, schizophrenia with negative symptoms often gets misdiagnosed, relying heavily on the clinician's experience. There is a pressing need to develop an objective and effective diagnostic method for this specific type of schizophrenia. This paper proposes a new deep-learning method called Cascaded Atrous Convolutional Network with Adaptive Weight Fusion (CA-AWFM) for classifying schizophrenia from electroencephalogram (EEG) data that combines cascaded networks with atrous convolutions and an adaptive weight fusion module (AWFM). This is because schizophrenia involves intricate and subtle brain wave patterns that make it difficult to detect the disorder from EEG signals. As such, our model uses an "atrous" convolution operation to extract multi-scale temporal information and a cascade network structure that progressively improves the attribute representations across layers. For classification purposes, AWFM enables our model to modify the importance of features dynamically. We evaluated our technique using a publicly available dataset of EEG recordings acquired from patients who have schizophrenia and everyday individuals. The proposed model has significantly outperformed existing methods with a 99.5% accuracy rate. With the help of atrous convolutions, local and global dependencies within the EEGs can be effectively modeled in this way. At the same time, AWFM makes flexible prioritization of characteristics possible for improved classification performance. With such impressive figures achieved, it can be concluded that our approach should be considered as accurate enough for routine clinical use in identifying schizophrenic patients early on so they can receive intervention measures on time or when diagnosed late, then dealt with appropriately.

摘要

精神分裂症是一种慢性且严重的精神疾病,会对患者的日常生活和工作产生重大影响。不幸的是,伴有阴性症状的精神分裂症常常被误诊,这在很大程度上依赖于临床医生的经验。迫切需要为这种特定类型的精神分裂症开发一种客观有效的诊断方法。本文提出了一种新的深度学习方法,即具有自适应权重融合的级联空洞卷积网络(CA-AWFM),用于从脑电图(EEG)数据中对精神分裂症进行分类,该方法将级联网络与空洞卷积以及自适应权重融合模块(AWFM)相结合。这是因为精神分裂症涉及复杂而微妙的脑电波模式,使得从EEG信号中检测该疾病变得困难。因此,我们的模型使用“空洞”卷积操作来提取多尺度时间信息,并采用级联网络结构逐步改善各层的属性表示。为了进行分类,AWFM使我们的模型能够动态修改特征的重要性。我们使用从精神分裂症患者和普通个体获取的公开可用EEG记录数据集对我们的技术进行了评估。所提出的模型以99.5%的准确率显著优于现有方法。借助空洞卷积,可以有效地对EEG中的局部和全局依赖性进行建模。同时,AWFM使灵活地对特征进行优先级排序以提高分类性能成为可能。取得了如此令人印象深刻的数据,可以得出结论,我们的方法在早期识别精神分裂症患者以便他们能及时接受干预措施,或者在晚期诊断时能得到适当处理方面,应该被认为足够准确以用于常规临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f9a/12190612/b24a0aec1bf1/peerj-cs-11-2811-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验