Suppr超能文献

高校教育改革中用于设计绩效评估方法的多目标特征回归模型优化

Optimization of multi-objective feature regression models for designing performance assessment methods in college and university educational reform.

作者信息

Qi Fengjun, Liu Zhenping, Zhang Wenzheng, Sun Zhenjie

机构信息

School of International Education, Nanning Normal University, Nanning, Guangxi, China.

Krirk University International College, Bangkok, Thailand.

出版信息

PeerJ Comput Sci. 2025 Jun 5;11:e2883. doi: 10.7717/peerj-cs.2883. eCollection 2025.

Abstract

The evaluation of teacher performance in higher education is a critical component of educational reform, requiring robust and accurate assessment methodologies. Multi-objective regression offers a promising approach to optimizing the construction of performance evaluation index systems. However, conventional regression models often rely on a shared input space for all targets, neglecting the fact that distinct and complex feature sets may influence each target. This study introduces a novel Multi-Objective Feature Regression model under Label-Specific Features (MOFR-LSF), which integrates target-specific features and inter-target correlations to address this limitation. By extending the single-objective stacking framework, the proposed method learns label-specific features for each target and employs cluster analysis on binned samples to uncover underlying correlations among objectives. Experimental evaluations on three datasets-Education Reform (EDU-REFORM), Programme for International Student Assessment (PISA), and National Assessment of Educational Progress (NAEP)-demonstrate the superior performance of MOFR-LSF, achieving relative root mean square error (RRMSE) values of 0.634, 0.332, and 0.925, respectively, outperforming existing multi-objective regression algorithms. The proposed model not only enhances predictive accuracy but also strengthens the scientific validity and fairness of performance evaluations, offering meaningful contributions to educational reform in colleges and universities. Moreover, its adaptable framework suggests potential applicability across a range of other domains.

摘要

高等教育中教师绩效评估是教育改革的关键组成部分,需要强大且准确的评估方法。多目标回归为优化绩效评估指标体系构建提供了一种有前景的方法。然而,传统回归模型通常依赖于所有目标的共享输入空间,忽略了不同且复杂的特征集可能影响每个目标这一事实。本研究引入了一种新颖的特定标签特征下的多目标特征回归模型(MOFR-LSF),该模型整合特定目标特征和目标间相关性以解决这一局限性。通过扩展单目标堆叠框架,所提出的方法为每个目标学习特定标签特征,并对分箱样本进行聚类分析以揭示目标间的潜在相关性。在三个数据集——教育改革(EDU-REFORM)、国际学生评估项目(PISA)和国家教育进展评估(NAEP)——上的实验评估表明,MOFR-LSF具有卓越性能,相对均方根误差(RRMSE)值分别为0.634、0.332和0.925,优于现有的多目标回归算法。所提出的模型不仅提高了预测准确性,还增强了绩效评估的科学有效性和公平性,为高校教育改革做出了有意义的贡献。此外,其适应性框架表明在一系列其他领域具有潜在适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f0b/12192971/47307a6e46b8/peerj-cs-11-2883-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验