Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Leganés, 28911, Madrid, Spain; Department of Computer Science, Aalto University, Espoo, 02150, Helsinki, Finland.
Department of Signal Theory and Communications, Universidad Carlos III de Madrid, Leganés, 28911, Madrid, Spain.
Neural Netw. 2024 Nov;179:106619. doi: 10.1016/j.neunet.2024.106619. Epub 2024 Aug 13.
This paper introduces a novel approach to learn multi-task regression models with constrained architecture complexity. The proposed model, named RFF-BLR, consists of a randomised feedforward neural network with two fundamental characteristics: a single hidden layer whose units implement the random Fourier features that approximate an RBF kernel, and a Bayesian formulation that optimises the weights connecting the hidden and output layers. The RFF-based hidden layer inherits the robustness of kernel methods. The Bayesian formulation enables promoting multioutput sparsity: all tasks interplay during the optimisation to select a compact subset of the hidden layer units that serve as common non-linear mapping for every tasks. The experimental results show that the RFF-BLR framework can lead to significant performance improvements compared to the state-of-the-art methods in multitask nonlinear regression, especially in small-sized training dataset scenarios.
本文提出了一种新的方法来学习具有约束架构复杂性的多任务回归模型。所提出的模型名为 RFF-BLR,由一个随机前馈神经网络组成,具有两个基本特征:一个单层隐藏层,其单元实现随机傅里叶特征,以近似 RBF 核;以及一种贝叶斯公式,用于优化连接隐藏层和输出层的权重。基于 RFF 的隐藏层继承了核方法的鲁棒性。贝叶斯公式可以促进多输出稀疏性:所有任务在优化过程中相互作用,选择隐藏层单元的一个紧凑子集,作为每个任务的共同非线性映射。实验结果表明,与多任务非线性回归的最先进方法相比,RFF-BLR 框架可以显著提高性能,尤其是在小训练数据集场景中。