Tariq Usman, Ahanger Tariq Ahamed
Prince Sattam Bin Abdulaziz University, Al-Kharj, Al-Riyadh, Saudi Arabia.
PeerJ Comput Sci. 2025 Apr 30;11:e2869. doi: 10.7717/peerj-cs.2869. eCollection 2025.
The proliferation of Internet of Things (IoT) devices in smart cities has revolutionized urban infrastructure while escalating the risk of botnet attacks that threaten essential services and public safety. This research addresses the critical need for intrusion detection and mitigation systems by introducing a novel hybrid deep learning model, Stacked Autoencoder-Gated Recurrent Unit (SAE-GRU), specifically designed for IoT networks in smart cities. The study targets the dual challenges of processing high-dimensional data and recognizing temporal patterns to identify and mitigate botnet activities in real time. The methodology integrates Stacked Autoencoders for reducing dimensionality and gated recurrent units for analyzing sequential data to ensure both accuracy and efficiency. An emulated smart city environment with diverse IoT devices and communication protocols provided a realistic testbed for evaluating the model. Results demonstrate significant improvements in detection performance with an average accuracy of 98.65 percent and consistently high precision and recall values. These findings enhance the understanding of IoT security by offering a scalable and resource-efficient solution for botnet detection. The functional investigation establishes a foundation for future research into adaptive security mechanisms that address emerging threats and highlights the practical potential of advanced deep learning techniques in safeguarding next-generation smart city ecosystems.
物联网(IoT)设备在智慧城市中的激增彻底改变了城市基础设施,同时也增加了僵尸网络攻击的风险,这些攻击威胁到关键服务和公共安全。本研究通过引入一种新颖的混合深度学习模型——堆叠自动编码器-门控循环单元(SAE-GRU),专门为智慧城市中的物联网网络设计,满足了对入侵检测和缓解系统的迫切需求。该研究针对处理高维数据和识别时间模式这两个双重挑战,以实时识别和缓解僵尸网络活动。该方法集成了用于降维的堆叠自动编码器和用于分析序列数据的门控循环单元,以确保准确性和效率。一个具有各种物联网设备和通信协议的模拟智慧城市环境为评估该模型提供了一个现实的测试平台。结果表明,检测性能有显著提高,平均准确率为98.65%,并且精度和召回率值始终很高。这些发现通过为僵尸网络检测提供一种可扩展且资源高效的解决方案,增强了对物联网安全的理解。功能研究为未来针对新兴威胁的自适应安全机制的研究奠定了基础,并突出了先进深度学习技术在保护下一代智慧城市生态系统方面的实际潜力。