Martinez-Perez M Elena, Rauscher Franziska G, Zhao Pingping, Elze Tobias
Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico.
Leipzig Research Centre for Civilization Diseases (LIFE), Universität Leipzig, Leipzig, Saxony, Germany.
PeerJ Comput Sci. 2025 Apr 1;11:e2621. doi: 10.7717/peerj-cs.2621. eCollection 2025.
In ophthalmology, the angle between the center of the optic nerve head and the center of sharpest vision (foveola) is a posterior fundus landmark parameter of the retina of the human eye. Together with the optic disc-fovea distance, it characterizes the position of the optic nerve head in relationship to the foveola. The optic disc-fovea angle markedly influences the regional distribution of retinal layer thickness patterns, specifically the retinal nerve fiber layer thickness measured at the optic disc. Thus, the optic disc-fovea angle needs to be determined and routinely taken into account in morphological glaucoma diagnosis and in the assessment of structure-function relationship in optic nerve diseases. However, despite the urgency of this information, currently the optic disc-fovea line and its angle are routinely not measured. Obtaining it post-measurement requires manual registration of the macula and optic disc optical coherence tomography (OCT) imaging data. OCT manufacturer-delivered software does not provide automated image registration. Therefore researchers are forced to manually perform the alignment over different scanning regions. To fill this gap, we provide two software packages which can be applied to routinely acquired clinical OCT data to automatically align macula and optic disc images. In this work, we introduce and comparatively evaluate two separate software packages (BloodVesselReg and OCTFundusReg) to automatically align macula and optic disc centered OCT volume scans based on their respective scanning laser ophthalmoscope (SLO) fundus images. BloodVesselReg implements an image registration and mosaicing algorithm based on retinal blood vessels. OCTFundusReg optimizes a general-purpose image registration toolkit to operate on SLO images. Both methods were independently developed by different subgroups of authors of this study using a training dataset of 18,047 eyes from a population-based study. The methods were tested on a dataset of 3,570 eyes from glaucoma patients, with success/failure assessed by visual inspection and compared to failure reporting of the methods themselves. BloodVesselReg had a slightly higher accuracy (94.7%) than OCTFundusReg (93.9%). Both methods together failed on only 1% of the eyes. BloodVesselReg reported 165 out of its 190 failures. OCTFundusReg provides a continuous failureAlert parameter which resulted in an area under the receiver operating characteristics curve (AUC) of 0.91 from a logistic regression model. When including the difference of fitting related parameters between the two methods, the AUC improved to 0.95. Both methods had success rates of over 90% when applied in isolation to a clinical testing dataset. When applying them together, the rate of at least one of the method succeeding was 99%. The methods are highly promising for applications under real-world clinical conditions and might help to facilitate disease detection and monitoring over time.
在眼科领域,视神经乳头中心与最清晰视觉中心(黄斑中心凹)之间的夹角是人类眼睛视网膜的一个眼底后极部标志性参数。它与视盘 - 黄斑中心凹距离一起,表征了视神经乳头相对于黄斑中心凹的位置。视盘 - 黄斑中心凹夹角对视网膜各层厚度模式的区域分布有显著影响,特别是对视盘处测量的视网膜神经纤维层厚度。因此,在形态学青光眼诊断以及视神经疾病的结构 - 功能关系评估中,需要确定并常规考虑视盘 - 黄斑中心凹夹角。然而,尽管这一信息十分迫切,但目前视盘 - 黄斑中心凹连线及其夹角通常并未测量。测量后获取该夹角需要手动配准黄斑和视盘的光学相干断层扫描(OCT)成像数据。OCT设备制造商提供的软件不具备自动图像配准功能。因此,研究人员不得不手动在不同扫描区域进行对齐操作。为填补这一空白,我们提供了两个软件包,可应用于常规获取的临床OCT数据,以自动对齐黄斑和视盘图像。在这项工作中,我们介绍并比较评估了两个独立的软件包(BloodVesselReg和OCTFundusReg),它们基于各自的扫描激光检眼镜(SLO)眼底图像,自动对齐以黄斑和视盘为中心的OCT容积扫描。BloodVesselReg实现了一种基于视网膜血管的图像配准和拼接算法。OCTFundusReg优化了一个通用图像配准工具包,使其能在SLO图像上运行。这两种方法均由本研究不同作者小组独立开发,使用了来自一项基于人群研究的18047只眼睛的训练数据集。这些方法在3570只青光眼患者眼睛的数据集上进行了测试,通过目视检查评估成功/失败情况,并与方法本身的失败报告进行比较。BloodVesselReg的准确率(94.7%)略高于OCTFundusReg(93.9%)。两种方法一起使用时,仅1%的眼睛配准失败。BloodVesselReg在其190次失败中有165次报告。OCTFundusReg提供了一个连续的失败警报参数,在逻辑回归模型中,其受试者操作特征曲线下面积(AUC)为0.91。当纳入两种方法拟合相关参数的差异时,AUC提高到0.95。两种方法单独应用于临床测试数据集时成功率均超过90%。当一起应用时,至少有一种方法成功的概率为99%。这些方法在实际临床条件下的应用前景广阔,可能有助于促进疾病的检测和长期监测。