Suppr超能文献

通过扫描激光检眼镜照片对弯曲视网膜的荧光素血管造影和光学相干断层扫描图像进行配准。

Registration of fluorescein angiography and optical coherence tomography images of curved retina via scanning laser ophthalmoscopy photographs.

作者信息

Almasi Ramin, Vafaei Abbas, Ghasemi Zeinab, Ommani Mohammad Reza, Dehghani Ali Reza, Rabbani Hossein

机构信息

Department of Computer Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.

Department of Electrical and Computer Engineering, University of Detroit Mercy, Detroit, MI 48202, USA.

出版信息

Biomed Opt Express. 2020 Jun 2;11(7):3455-3476. doi: 10.1364/BOE.395784. eCollection 2020 Jul 1.

Abstract

Accurate and automatic registration of multimodal retinal images such as fluorescein angiography (FA) and optical coherence tomography (OCT) enables utilization of supplementary information. FA is a gold standard imaging modality that depicts neurovascular structure of retina and is used for diagnosing neurovascular-related diseases such as diabetic retinopathy (DR). Unlike FA, OCT is non-invasive retinal imaging modality that provides cross-sectional data of retina. Due to differences in contrast, resolution and brightness of multimodal retinal images, the images resulted from vessel extraction of image pairs are not exactly the same. Also, prevalent feature detection, extraction and matching schemes do not result in perfect matches. In addition, the relationships between retinal image pairs are usually modeled by affine transformation, which cannot generate accurate alignments due to the non-planar retina surface. In this paper, a precise registration scheme is proposed to align FA and OCT images via scanning laser ophthalmoscopy (SLO) photographs as intermediate images. For this purpose, first a retinal vessel segmentation is applied to extract main blood vessels from the FA and SLO images. Next, a novel global registration is proposed based on the Gaussian model for curved surface of retina. For doing so, first a global rigid transformation is applied to FA vessel-map image using a new feature-based method to align it with SLO vessel-map photograph, in a way that outlier matched features resulted from not-perfect vessel segmentation are completely eliminated. After that, the transformed image is globally registered again considering Gaussian model for curved surface of retina to improve the precision of the previous step. Eventually a local non-rigid transformation is exploited to register two images perfectly. The experimental results indicate the presented scheme is more precise compared to other registration methods.

摘要

准确且自动地配准多模态视网膜图像,如荧光素血管造影(FA)和光学相干断层扫描(OCT),能够利用补充信息。FA是一种描绘视网膜神经血管结构的金标准成像方式,用于诊断糖尿病视网膜病变(DR)等神经血管相关疾病。与FA不同,OCT是一种提供视网膜横截面数据的非侵入性视网膜成像方式。由于多模态视网膜图像在对比度、分辨率和亮度上存在差异,从图像对的血管提取中得到的图像并不完全相同。此外,普遍的特征检测、提取和匹配方案也无法实现完美匹配。另外,视网膜图像对之间的关系通常由仿射变换建模,由于视网膜表面是非平面的,这种变换无法生成精确的对齐。本文提出了一种精确的配准方案,通过扫描激光检眼镜(SLO)照片作为中间图像来对齐FA和OCT图像。为此,首先应用视网膜血管分割从FA和SLO图像中提取主要血管。接下来,基于视网膜曲面的高斯模型提出了一种新颖的全局配准方法。具体做法是,首先使用一种基于新特征的方法对FA血管图图像进行全局刚性变换,使其与SLO血管图照片对齐,从而完全消除因血管分割不完美而导致的异常匹配特征。之后,考虑视网膜曲面高斯模型对变换后的图像再次进行全局配准,以提高上一步的精度。最终利用局部非刚性变换完美地配准两幅图像。实验结果表明,与其他配准方法相比,本文提出的方案更为精确。

相似文献

1
Registration of fluorescein angiography and optical coherence tomography images of curved retina via scanning laser ophthalmoscopy photographs.
Biomed Opt Express. 2020 Jun 2;11(7):3455-3476. doi: 10.1364/BOE.395784. eCollection 2020 Jul 1.
2
Optical coherence tomography angiography (OCT-A) in an animal model of laser-induced choroidal neovascularization.
Exp Eye Res. 2019 Jul;184:162-171. doi: 10.1016/j.exer.2019.04.002. Epub 2019 Apr 16.
3
Non-rigid registration of Fluorescein Angiography and Optical Coherence Tomography via scanning laser ophthalmoscope imaging.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:4415-4418. doi: 10.1109/EMBC.2017.8037835.
4
Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema.
Ophthalmology. 2009 Jun;116(6):1158-67. doi: 10.1016/j.ophtha.2008.12.063. Epub 2009 Apr 23.
6
Retinal vessel segmentation on SLO image.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2258-61. doi: 10.1109/IEMBS.2008.4649646.
7
Multimodal registration of SD-OCT volumes and fundus photographs using histograms of oriented gradients.
Biomed Opt Express. 2016 Nov 23;7(12):5252-5267. doi: 10.1364/BOE.7.005252. eCollection 2016 Dec 1.
9

引用本文的文献

3
Automatic Detection of Microaneurysms in OCT Images Using Bag of Features.
Comput Math Methods Med. 2022 Jul 15;2022:1233068. doi: 10.1155/2022/1233068. eCollection 2022.
4
Automated inter-device 3D OCT image registration using deep learning and retinal layer segmentation.
Biomed Opt Express. 2023 Jun 27;14(7):3726-3747. doi: 10.1364/BOE.493047. eCollection 2023 Jul 1.
5
Adaptive optics scanning laser ophthalmoscopy and optical coherence tomography (AO-SLO-OCT) system for mouse retina imaging.
Biomed Opt Express. 2022 Dec 19;14(1):299-314. doi: 10.1364/BOE.473447. eCollection 2023 Jan 1.
7
Chronological Registration of OCT and Autofluorescence Findings in CSCR: Two Distinct Patterns in Disease Course.
Diagnostics (Basel). 2022 Jul 22;12(8):1780. doi: 10.3390/diagnostics12081780.
9
Generating large field of view en-face projection images from intra-acquisition motion compensated volumetric optical coherence tomography data.
Biomed Opt Express. 2020 Nov 4;11(12):6881-6904. doi: 10.1364/BOE.404738. eCollection 2020 Dec 1.

本文引用的文献

1
Robust Feature Matching Using Spatial Clustering with Heavy Outliers.
IEEE Trans Image Process. 2019 Aug 26. doi: 10.1109/TIP.2019.2934572.
2
LMR: Learning a Two-Class Classifier for Mismatch Removal.
IEEE Trans Image Process. 2019 Aug;28(8):4045-4059. doi: 10.1109/TIP.2019.2906490. Epub 2019 Mar 20.
3
Multi-modal and multi-vendor retina image registration.
Biomed Opt Express. 2018 Jan 3;9(2):410-422. doi: 10.1364/BOE.9.000410. eCollection 2018 Feb 1.
4
Feature-Based Retinal Image Registration Using D-Saddle Feature.
J Healthc Eng. 2017;2017:1489524. doi: 10.1155/2017/1489524. Epub 2017 Oct 24.
5
Non-rigid registration of Fluorescein Angiography and Optical Coherence Tomography via scanning laser ophthalmoscope imaging.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:4415-4418. doi: 10.1109/EMBC.2017.8037835.
6
Recent Advancements in Retinal Vessel Segmentation.
J Med Syst. 2017 Apr;41(4):70. doi: 10.1007/s10916-017-0719-2. Epub 2017 Mar 11.
7
Multimodal registration of SD-OCT volumes and fundus photographs using histograms of oriented gradients.
Biomed Opt Express. 2016 Nov 23;7(12):5252-5267. doi: 10.1364/BOE.7.005252. eCollection 2016 Dec 1.
8
A survey of medical image registration - under review.
Med Image Anal. 2016 Oct;33:140-144. doi: 10.1016/j.media.2016.06.030. Epub 2016 Jun 21.
9
Multimodal Segmentation of Optic Disc and Cup From SD-OCT and Color Fundus Photographs Using a Machine-Learning Graph-Based Approach.
IEEE Trans Med Imaging. 2015 Sep;34(9):1854-66. doi: 10.1109/TMI.2015.2412881. Epub 2015 Mar 13.
10
Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema.
Invest Ophthalmol Vis Sci. 2015 Jan 29;56(3):1482-92. doi: 10.1167/iovs.14-15457.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验