Suppr超能文献

一种基于知识图谱的对比学习药物相互作用预测方法。

A Knowledge Graph-Based Method for Drug-Drug Interaction Prediction With Contrastive Learning.

作者信息

Zhong Jian, Zhao Haochen, Zhao Qichang, Wang Jianxin

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2024 Nov-Dec;21(6):2485-2495. doi: 10.1109/TCBB.2024.3477410. Epub 2024 Dec 10.

Abstract

Precisely predicting Drug-Drug Interactions (DDIs) carries the potential to elevate the quality and safety of drug therapies, protecting the well-being of patients, and providing essential guidance and decision support at every stage of the drug development process. In recent years, leveraging large-scale biomedical knowledge graphs has improved DDI prediction performance. However, the feature extraction procedures in these methods are still rough. More refined features may further improve the quality of predictions. To overcome these limitations, we develop a knowledge graph-based method for multi-typed DDI prediction with contrastive learning (KG-CLDDI). In KG-CLDDI, we combine drug knowledge aggregation features from the knowledge graph with drug topological aggregation features from the DDI graph. Additionally, we build a contrastive learning module that uses horizontal reversal and dropout operations to produce high-quality embeddings for drug-drug pairs. The comparison results indicate that KG-CLDDI is superior to state-of-the-art models in both the transductive and inductive settings. Notably, for the inductive setting, KG-CLDDI outperforms the previous best method by 17.49% and 24.97% in terms of AUC and AUPR, respectively. Furthermore, we conduct the ablation analysis and case study to show the effectiveness of KG-CLDDI. These findings illustrate the potential significance of KG-CLDDI in advancing DDI research and its clinical applications.

摘要

精确预测药物 - 药物相互作用(DDIs)有潜力提高药物治疗的质量和安全性,保护患者的健康,并在药物研发过程的每个阶段提供重要的指导和决策支持。近年来,利用大规模生物医学知识图谱提高了DDI预测性能。然而,这些方法中的特征提取过程仍然粗糙。更精细的特征可能会进一步提高预测质量。为了克服这些限制,我们开发了一种基于知识图谱的对比学习多类型DDI预测方法(KG-CLDDI)。在KG-CLDDI中,我们将来自知识图谱的药物知识聚合特征与来自DDI图谱的药物拓扑聚合特征相结合。此外,我们构建了一个对比学习模块,该模块使用水平翻转和随机失活操作来为药物 - 药物对生成高质量的嵌入。比较结果表明,KG-CLDDI在转导和归纳设置中均优于现有模型。值得注意的是,对于归纳设置,KG-CLDDI在AUC和AUPR方面分别比之前最好的方法高出17.49%和24.97%。此外,我们进行了消融分析和案例研究以展示KG-CLDDI的有效性。这些发现说明了KG-CLDDI在推进DDI研究及其临床应用方面的潜在重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验