Chaudhry Hassan Nazeer, Kulsoom Farzana, Ullah Khan Zahid, Aman Muhammad, Khan Sajid Ullah, Albanyan Abdullah
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy, Milano, Città Metropolitana di Milano, Italy.
Department of Telecommunication Engineering, University of Engineering and Technology, Taxila, Pakistan.
PeerJ Comput Sci. 2025 May 6;11:e2760. doi: 10.7717/peerj-cs.2760. eCollection 2025.
In this article, we present a novel Transformer-Based Aspect-Level Sentiment Classification with Intent (TASCI) model, designed to enhance sentiment analysis by integrating aspect-level sentiment classification with intent analysis. Traditional sentiment analysis methods often overlook the nuanced relationship between the intent behind a statement and the sentiment expressed toward specific aspects of an entity. TASCI addresses this gap by first extracting aspects using a self-attention mechanism and then employing a Transformer-based model to infer the speaker's intent from preceding sentences. This dual approach allows TASCI to contextualize sentiment analysis, providing a more accurate reflection of user opinions. We validate TASCI's performance on three benchmark datasets: Restaurant, Laptop, and Twitter, achieving state-of-the-art results with an accuracy of 89.10% and a macro-F1 score of 83.38% on the Restaurant dataset, 84.81% accuracy and 78.63% macro-F1 score on the Laptop dataset, and 79.08% accuracy and 77.27% macro-F1 score on the Twitter dataset. These results demonstrate that incorporating intent analysis significantly enhances the model's ability to capture complex sentiment expressions across different domains, thereby setting a new standard for aspect-level sentiment classification.
在本文中,我们提出了一种新颖的基于Transformer的带意图的方面级情感分类(TASCI)模型,旨在通过将方面级情感分类与意图分析相结合来增强情感分析。传统的情感分析方法常常忽略语句背后的意图与对实体特定方面所表达的情感之间的细微关系。TASCI通过首先使用自注意力机制提取方面,然后采用基于Transformer的模型从前序句子中推断说话者的意图来解决这一差距。这种双重方法使TASCI能够将情感分析置于上下文中,更准确地反映用户意见。我们在三个基准数据集(餐厅、笔记本电脑和推特)上验证了TASCI的性能,在餐厅数据集上取得了89.10%的准确率和83.38%的宏F1分数,在笔记本电脑数据集上取得了84.81%的准确率和78.63%的宏F1分数,在推特数据集上取得了79.08%的准确率和77.27%的宏F1分数,达到了当前最优的结果。这些结果表明,纳入意图分析显著增强了模型捕捉不同领域复杂情感表达的能力,从而为方面级情感分类设定了新的标准。