Lindborg Alma, Musiolek Lea, Ostwald Dirk, Rabovsky Milena
Department of Psychology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
Adaptive Systems Group, Department of Computer Science, Humboldt-Universitaet zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
Neuroimage Rep. 2023 Mar 4;3(1):100161. doi: 10.1016/j.ynirp.2023.100161. eCollection 2023 Mar.
Language is central to human life; however, how our brains derive meaning from language is still not well understood. A commonly studied electrophysiological measure of on-line meaning related processing is the N400 component, the computational basis of which is still actively debated. Here, we test one of the recently proposed, computationally explicit hypotheses on the N400 - namely, that it reflects surprise with respect to a probabilistic representation of the semantic features of the current stimulus in a given context. We devise a Bayesian sequential learner model to derive trial-by-trial semantic surprise in a semantic oddball like roving paradigm experiment, where single nouns from different semantic categories are presented in sequences. Using experimental data from 40 subjects, we show that model-derived semantic surprise significantly predicts the N400 amplitude, substantially outperforming a non-probabilistic baseline model. Investigating the temporal signature of the effect, we find that the effect of semantic surprise on the EEG is restricted to the time window of the N400. Moreover, comparing the topography of the semantic surprise effect to a conventional ERP analysis of predicted vs. unpredicted words, we find that the semantic surprise closely replicates the N400 topography. Our results make a strong case for the role of probabilistic semantic representations in eliciting the N400, and in language comprehension in general.
语言是人类生活的核心;然而,我们的大脑如何从语言中获取意义仍未得到充分理解。一种常用的在线意义相关处理的电生理测量方法是N400成分,其计算基础仍在激烈争论中。在这里,我们测试了最近提出的关于N400的一个计算明确的假设——即它反映了在给定语境中对当前刺激语义特征概率表示的惊讶。我们设计了一个贝叶斯序列学习模型,在类似语义异常刺激漫游范式实验中逐次推导语义惊讶,在该实验中,来自不同语义类别的单个名词按顺序呈现。使用来自40名受试者的实验数据,我们表明模型推导的语义惊讶显著预测了N400波幅,大大优于非概率基线模型。研究该效应的时间特征,我们发现语义惊讶对脑电图的影响仅限于N400的时间窗口。此外,将语义惊讶效应的地形图与预测词与未预测词的传统事件相关电位分析进行比较,我们发现语义惊讶紧密复制了N400地形图。我们的结果有力地证明了概率语义表示在引发N400以及一般语言理解中的作用。