Donders Institute, Radboud University, 6525 EN Nijmegen, The Netherlands.
Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2201968119. doi: 10.1073/pnas.2201968119. Epub 2022 Aug 3.
Understanding spoken language requires transforming ambiguous acoustic streams into a hierarchy of representations, from phonemes to meaning. It has been suggested that the brain uses prediction to guide the interpretation of incoming input. However, the role of prediction in language processing remains disputed, with disagreement about both the ubiquity and representational nature of predictions. Here, we address both issues by analyzing brain recordings of participants listening to audiobooks, and using a deep neural network (GPT-2) to precisely quantify contextual predictions. First, we establish that brain responses to words are modulated by ubiquitous predictions. Next, we disentangle model-based predictions into distinct dimensions, revealing dissociable neural signatures of predictions about syntactic category (parts of speech), phonemes, and semantics. Finally, we show that high-level (word) predictions inform low-level (phoneme) predictions, supporting hierarchical predictive processing. Together, these results underscore the ubiquity of prediction in language processing, showing that the brain spontaneously predicts upcoming language at multiple levels of abstraction.
理解口语需要将模糊的声学流转化为表示层次,从音位到意义。有人认为,大脑利用预测来指导对输入的解释。然而,预测在语言处理中的作用仍然存在争议,人们对预测的普遍性和表示性质存在分歧。在这里,我们通过分析参与者听有声读物时的大脑记录,并使用深度神经网络(GPT-2)来精确量化上下文预测,来解决这两个问题。首先,我们确定大脑对单词的反应受到普遍预测的调节。接下来,我们将基于模型的预测分解为不同的维度,揭示了关于句法类别(词性)、音位和语义的预测的可分离的神经特征。最后,我们表明,高层(单词)预测会影响低层(音位)预测,支持分层预测处理。总的来说,这些结果强调了预测在语言处理中的普遍性,表明大脑会在多个抽象层次上自发地预测即将到来的语言。