Suppr超能文献

预测耐药性HIV蛋白酶的演变。

Forecasting drug resistant HIV protease evolution.

作者信息

Aggarwal Manu, Periwal Vipul

机构信息

National Institutes of Health, Bethesda, MD.

出版信息

bioRxiv. 2025 Apr 4:2025.03.31.646462. doi: 10.1101/2025.03.31.646462.

Abstract

Protease inhibitors (PIs) target the protease (PR) enzyme to suppress viral replication. Their efficacy in human immunodeficiency virus treatment is compromised by the emergence of drug-resistant strains. Therefore, forecasting drug-resistance during viral evolution would help in the design of effective treatment strategies. We develop a probabilistic large-deviation model to infer epistatic interactions in genotypes observed in different treatment regimens and compute transition probabilities of point-mutations conditioned on the genotype and the treatment regimen. We simulate stochastic evolutionary paths weighted by such transition probabilities and show that low probable mutations are required for the viral population to evolve to diverse fit genotypes. We train classification models using a clinical data set of susceptibility tests to learn to infer the drug resistance of a genotype. We infer drug resistance along simulated evolutionary paths and predict that the combination PI-therapy of Atazanavir (ATV) and Ritonavir (RTV) is the least drug resistant. Without prior knowledge of PI-associated mutations, our model predicts known primary and secondary PI-resistant mutations as critical to drug resistance. This validates that our model learned mechanistic relations in the small data sets, tackling the challenge of sparse sequence data compared to the large combinatorial complexity of protein evolution and changing functionality in dynamic environments.

摘要

蛋白酶抑制剂(PIs)作用于蛋白酶(PR)酶以抑制病毒复制。耐药菌株的出现削弱了它们在人类免疫缺陷病毒治疗中的疗效。因此,预测病毒进化过程中的耐药性将有助于设计有效的治疗策略。我们开发了一个概率大偏差模型,以推断在不同治疗方案中观察到的基因型中的上位性相互作用,并计算基于基因型和治疗方案的点突变的转移概率。我们模拟了由这种转移概率加权的随机进化路径,并表明病毒群体进化到不同的适应基因型需要低概率突变。我们使用药敏试验的临床数据集训练分类模型,以学习推断基因型的耐药性。我们沿着模拟的进化路径推断耐药性,并预测阿扎那韦(ATV)和利托那韦(RTV)的联合PI治疗耐药性最低。在没有PI相关突变先验知识的情况下,我们的模型预测已知的原发性和继发性PI耐药突变对耐药性至关重要。这证实了我们的模型在小数据集中学习到了机制关系,解决了与蛋白质进化的大组合复杂性和动态环境中变化的功能相比稀疏序列数据的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ae4/12190175/6c6ec8c91943/nihpp-2025.03.31.646462v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验