Suppr超能文献

多中心液体衰减反转恢复磁共振成像(FLAIR MRI)中白质病变的分割

Segmentation of white matter lesions in multicentre FLAIR MRI.

作者信息

Khademi April, Gibicar Adam, Arezza Giordano, DiGregorio Justin, Tyrrell Pascal N, Moody Alan R

机构信息

Image Analysis in Medicine Lab (IAMLAB), Department of Electrical, Computer, and Biomedical Engineering, Ryerson University, Toronto, Canada.

Keenan Research Center for Biomedical Science, St. Michael's Hospital, Unity Health Network, Toronto, Canada.

出版信息

Neuroimage Rep. 2021 Aug 5;1(4):100044. doi: 10.1016/j.ynirp.2021.100044. eCollection 2021 Dec.

Abstract

White matter lesions (WML) in the brain are thought to be related to ischemic processes, demyelination, and axonal degeneration. The presence of WML predict cognitive decline, dementia, stroke, and death. Lesion progression increases these risks, making WML significant clinical biomarkers for investigation. To analyze WML objectively, consistently, and efficiently, automated WML segmentation methods for neurological MRI have been the focus of extensive research efforts. There have been many unsupervised and traditional machine learning methods proposed over the years. Recently, deep learning architectures have been utilized for WML segmentation with promising results. In this work, we evaluate seven WML segmentation tools for multicentre fluid attenuated inversion recovery (FLAIR) MRI. Two traditional methods were evaluated, one unsupervised method and the other a traditional machine learning approach. The traditional methods were compared to five deep learning-based approaches. FLAIR MRI have the advantage of highlighting WML lesions robustly and are used routinely in neurological workflows. Automated WML segmentation tools for FLAIR MRI could optimize clinical workflows and improve patient care. The WML segmentation algorithms were evaluated on a multicentre, multi-disease FLAIR MRI database acquired with varying scanners and protocols. In total 252 imaging volumes (~13 K image slices) with annotations, from 5 multicentre datasets (33 imaging centres) were used to train, validate and test the WML segmentation methods. Two clinical datasets, which include dementia and vascular disease pathologies, and three open-source datasets were used. To examine clinical utility of each algorithm and establish proof of effectiveness, algorithms were evaluated over several dimensions related to accuracy, generalizability, and robustness to pathology. This work presents a framework for evaluating the efficacy of WML segmentation algorithms for improved reliability, patient safety and clinical trials. Of all methods, SC U-Net was found to be the best algorithm for WML segmentation in terms of highest Dice similarity coefficient (DSC) over most dimensions (mean DSC = 0.71 over all volumes). Deep learning methods outperformed traditional methods, especially in lower lesion loads, but were not able to generalize across all disease categories or datasets.

摘要

脑白质病变(WML)被认为与缺血过程、脱髓鞘和轴突变性有关。WML的存在预示着认知能力下降、痴呆、中风和死亡。病变进展会增加这些风险,使WML成为值得研究的重要临床生物标志物。为了客观、一致且高效地分析WML,用于神经MRI的自动WML分割方法一直是广泛研究的重点。多年来已经提出了许多无监督和传统的机器学习方法。最近,深度学习架构已被用于WML分割,并取得了有前景的结果。在这项工作中,我们评估了七种用于多中心液体衰减反转恢复(FLAIR)MRI的WML分割工具。评估了两种传统方法,一种是无监督方法,另一种是传统机器学习方法。将传统方法与五种基于深度学习的方法进行了比较。FLAIR MRI具有能强有力地突出WML病变的优势,并且在神经工作流程中经常使用。用于FLAIR MRI的自动WML分割工具可以优化临床工作流程并改善患者护理。在一个通过不同扫描仪和协议获取的多中心、多疾病FLAIR MRI数据库上对WML分割算法进行了评估。总共使用了来自5个多中心数据集(33个成像中心)的252个带注释的成像体积(约13K图像切片)来训练、验证和测试WML分割方法。使用了两个临床数据集,包括痴呆和血管疾病病理学数据集,以及三个开源数据集。为了检验每种算法的临床实用性并确立有效性证据,在与准确性、通用性和对病理学的鲁棒性相关的几个维度上对算法进行了评估。这项工作提出了一个评估WML分割算法功效的框架,以提高可靠性、患者安全性和临床试验水平。在所有方法中,就大多数维度上的最高骰子相似系数(DSC)而言(所有体积的平均DSC = 0.71),SC U-Net被发现是WML分割的最佳算法。深度学习方法优于传统方法,尤其是在较低病变负荷情况下,但无法在所有疾病类别或数据集上实现通用化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec0/12172830/c1043054d7e6/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验