Suppr超能文献

MRI 扫描中存在弥漫性胶质瘤时的脑提取:深度学习方法的多机构性能评估和稳健的模态不可知训练。

Brain extraction on MRI scans in presence of diffuse glioma: Multi-institutional performance evaluation of deep learning methods and robust modality-agnostic training.

机构信息

Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA; Shri Guru Gobind Singhji Institute of Engineering and Technology, Nanded, Maharashtra, India.

Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Neuroimage. 2020 Oct 15;220:117081. doi: 10.1016/j.neuroimage.2020.117081. Epub 2020 Jun 27.

Abstract

Brain extraction, or skull-stripping, is an essential pre-processing step in neuro-imaging that has a direct impact on the quality of all subsequent processing and analyses steps. It is also a key requirement in multi-institutional collaborations to comply with privacy-preserving regulations. Existing automated methods, including Deep Learning (DL) based methods that have obtained state-of-the-art results in recent years, have primarily targeted brain extraction without considering pathologically-affected brains. Accordingly, they perform sub-optimally when applied on magnetic resonance imaging (MRI) brain scans with apparent pathologies such as brain tumors. Furthermore, existing methods focus on using only T1-weighted MRI scans, even though multi-parametric MRI (mpMRI) scans are routinely acquired for patients with suspected brain tumors. In this study, we present a comprehensive performance evaluation of recent deep learning architectures for brain extraction, training models on mpMRI scans of pathologically-affected brains, with a particular focus on seeking a practically-applicable, low computational footprint approach, generalizable across multiple institutions, further facilitating collaborations. We identified a large retrospective multi-institutional dataset of n=3340 mpMRI brain tumor scans, with manually-inspected and approved gold-standard segmentations, acquired during standard clinical practice under varying acquisition protocols, both from private institutional data and public (TCIA) collections. To facilitate optimal utilization of rich mpMRI data, we further introduce and evaluate a novel ''modality-agnostic training'' technique that can be applied using any available modality, without need for model retraining. Our results indicate that the modality-agnostic approach obtains accurate results, providing a generic and practical tool for brain extraction on scans with brain tumors.

摘要

脑提取,或颅骨剥离,是神经影像学中一个基本的预处理步骤,直接影响所有后续处理和分析步骤的质量。它也是遵守隐私保护法规的多机构合作的关键要求。现有的自动化方法,包括近年来在脑提取方面取得最先进成果的基于深度学习(DL)的方法,主要针对没有考虑病理性大脑的脑提取。因此,当应用于具有明显病变(如脑肿瘤)的磁共振成像(MRI)脑扫描时,它们的性能就会不理想。此外,现有的方法主要侧重于仅使用 T1 加权 MRI 扫描,即使多参数 MRI(mpMRI)扫描通常是为疑似脑肿瘤的患者采集的。在这项研究中,我们对最近用于脑提取的深度学习架构进行了全面的性能评估,在病理性大脑的 mpMRI 扫描上训练模型,特别关注寻求一种实用的、低计算足迹的方法,能够跨多个机构推广,进一步促进合作。我们确定了一个大型回顾性多机构数据集,其中包含 n=3340 例 mpMRI 脑肿瘤扫描,这些扫描是在不同采集协议下,在标准临床实践中采集的,具有手动检查和批准的金标准分割,来自私人机构数据和公共(TCIA)数据集。为了优化利用丰富的 mpMRI 数据,我们进一步引入并评估了一种新颖的“与模态无关的训练”技术,该技术可以应用于任何可用的模态,而无需重新训练模型。我们的结果表明,与模态无关的方法可以获得准确的结果,为具有脑肿瘤的扫描提供了一种通用实用的脑提取工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0224/7597856/1404c195b6a8/nihms-1639060-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验