Suppr超能文献

克服毒性:非拮抗微生物如何在兴衰交替的环境中茁壮成长。

Overcoming toxicity: How nonantagonistic microbes manage to thrive in boom-and-bust environments.

作者信息

Wang MingYi, Vladimirsky Alexander, Giometto Andrea

机构信息

Center for Applied Mathematics, Cornell University, Ithaca, NY 14853.

Department of Mathematics and Center for Applied Mathematics, Cornell University, Ithaca, NY 14853.

出版信息

Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2424372122. doi: 10.1073/pnas.2424372122. Epub 2025 Jun 26.

Abstract

Antagonistic interactions are critical determinants of microbial community stability and composition, offering host benefits such as pathogen protection and providing avenues for antimicrobial control. While the ability to eliminate competitors confers an advantage to antagonistic microbes, it often incurs a fitness cost. Consequently, many microbes only produce toxins or engage in antagonistic behavior in response to specific cues like quorum sensing molecules or environmental stress. In laboratory settings, antagonistic microbes typically dominate over sensitive ones, raising the question of why both antagonistic and nonantagonistic microbes are found in natural environments and host microbiomes. Here, using both theoretical models and experiments with killer strains of , we show that "boom-and-bust" dynamics-periods of rapid growth punctuated by episodic mortality events-caused by temporal environmental fluctuations can favor nonantagonistic microbes that do not incur the growth rate cost of toxin production. Additionally, using control theory, we derive bounds on the competitive performance and identify optimal regulatory toxin-production strategies in various boom-and-bust environments where population dilutions occur either deterministically or stochastically over time. Our mathematical investigation reveals that optimal toxin regulation is much more beneficial to killers in stochastic, rather than deterministic, boom-and-bust environments. Overall, our findings show how both antagonistic and nonantagonistic microbes can thrive under varying environmental conditions.

摘要

拮抗相互作用是微生物群落稳定性和组成的关键决定因素,为宿主带来诸如病原体保护等益处,并为抗菌控制提供途径。虽然消除竞争者的能力赋予了拮抗微生物优势,但这通常会带来适应性成本。因此,许多微生物仅在响应群体感应分子或环境压力等特定信号时才产生毒素或表现出拮抗行为。在实验室环境中,拮抗微生物通常会胜过敏感微生物,这就引发了一个问题:为什么在自然环境和宿主微生物群中既能发现拮抗微生物,也能发现非拮抗微生物。在这里,我们通过理论模型和对某种杀伤菌株的实验表明,由时间性环境波动引起的“繁荣与萧条”动态——快速生长阶段被偶发性死亡事件打断——可能有利于不承担毒素产生所带来的生长速率成本的非拮抗微生物。此外,我们运用控制理论,得出了竞争性能的界限,并确定了在各种“繁荣与萧条”环境中的最优调控毒素产生策略,在这些环境中,种群稀释会随着时间确定性或随机性地发生。我们的数学研究表明,在随机而非确定性的“繁荣与萧条”环境中,最优毒素调控对杀伤菌株更为有利。总体而言,我们的研究结果表明了拮抗微生物和非拮抗微生物如何在不同的环境条件下蓬勃发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1899/12232701/a04903c03f9a/pnas.2424372122fig01.jpg

相似文献

3
Stigma Management Strategies of Autistic Social Media Users.自闭症社交媒体用户的污名管理策略
Autism Adulthood. 2025 May 28;7(3):273-282. doi: 10.1089/aut.2023.0095. eCollection 2025 Jun.

本文引用的文献

2
Spatial constraints and stochastic seeding subvert microbial arms race.空间限制和随机播种颠覆了微生物军备竞赛。
PLoS Comput Biol. 2024 Jan 26;20(1):e1011807. doi: 10.1371/journal.pcbi.1011807. eCollection 2024 Jan.
3
The evolution of short- and long-range weapons for bacterial competition.细菌竞争的短程和远程武器的进化。
Nat Ecol Evol. 2023 Dec;7(12):2080-2091. doi: 10.1038/s41559-023-02234-2. Epub 2023 Nov 30.
4
The evolutionary ecology of fungal killer phenotypes.真菌杀真菌表型的进化生态学。
Proc Biol Sci. 2023 Aug 30;290(2005):20231108. doi: 10.1098/rspb.2023.1108. Epub 2023 Aug 16.
6
Mode of killing determines the necrotrophic response of oral bacteria.杀灭方式决定口腔细菌的坏死营养反应。
J Oral Microbiol. 2023 Mar 6;15(1):2184930. doi: 10.1080/20002297.2023.2184930. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验