Panthier Frédéric, Berthe Laurent, Ghnatios Chady, Chinesta Francisco, Kutchukian Stessy, Doizi Steeve, Audenet François, Yonneau Laurent, Lebret Thierry, Timsit Marc-Olivier, Mejean Arnaud, Candela Luigi, Solano Catalina, Corrales Mariela, Chicaud Marie, Traxer Olivier, Smith Daron
Department of Urology, Westmoreland Street Hospital, and Clinical Microbiology, UCLH NHS Foundation Trust, London, UK.
Service d'Urologie, Assistance-Publique Hôpitaux de Paris, Hôpital Tenon, Sorbonne Université, 75020, Paris, France.
World J Urol. 2025 Jun 26;43(1):396. doi: 10.1007/s00345-025-05771-6.
"Kidney Stone Calculator" (KSC) helps to plan flexible ureteroscopy, providing the stone volume (SV) and an estimated duration of laser lithotripsy (eLD). eLD is calculated from in vitro ablation rates and SV. KSC's accuracy has been demonstrated with a mean difference between eLD and effective LD (EfLD) of 18.8%. We aimed to reduce the eLD-efLD difference using Machine Learning (ML).
From the prospective multicenter KSC database, demographic and peri-operative data were anonymously extracted: SV, stone location, maximum density, anatomy, surgical expertise, ureteral access sheath, basket use, laser source, fiber diameter and settings, eLD and efLD. After normalization and splitting (training (80%), test (20%)), significant variables influencing the difference between eLD and efLD were selected through multiple linear regression (MLR). Six types of ML models were subsequently evaluated to minimize the mean absolute error (MAE) between eLD and efLD on the test group.
125 patients were included. After normalization and MLR, MAE were significantly influenced by 14 variables (including diverticulum location, surgical expertise, laser sources, laser fiber diameters, 5 Hz frequency, 1.5 J pulse energy and eLD). eLD had the greatest positive impact on the eLD-efLD difference (2.45 (2.16-2.73), p < 0.0001)). Above the various tested ML models, the Bayesian "Automatic-Relevance-Determination" and Dense Neural Networks respectively presented the lowest and highest MAE on the test group (3.9% and 6.8%). Results did not differ among models overall (p = 0.93) and two by two.
The difference between KSC's eLD and efLD can be five-fold reduced using ML and Artificial Intelligence, including clinically impactful factors such as the surgical technique or expertise. A clinical inference could help to externally validate our findings.
“肾结石计算器”(KSC)有助于规划灵活输尿管镜检查,提供结石体积(SV)和激光碎石术的估计持续时间(eLD)。eLD根据体外消融率和SV计算得出。KSC的准确性已得到证实,eLD与有效激光碎石持续时间(EfLD)之间的平均差异为18.8%。我们旨在使用机器学习(ML)来缩小eLD与EfLD之间的差异。
从前瞻性多中心KSC数据库中匿名提取人口统计学和围手术期数据:SV、结石位置、最大密度、解剖结构、手术专业知识、输尿管通路鞘、网篮使用情况、激光源、光纤直径和设置、eLD和EfLD。在进行归一化和拆分(训练(80%)、测试(20%))后,通过多元线性回归(MLR)选择影响eLD与EfLD之间差异的显著变量。随后评估了六种类型的ML模型,以最小化测试组中eLD与EfLD之间的平均绝对误差(MAE)。
纳入125例患者。经过归一化和MLR后,MAE受到14个变量的显著影响(包括憩室位置、手术专业知识、激光源、激光光纤直径、5Hz频率、1.5J脉冲能量和eLD)。eLD对eLD与EfLD之间的差异具有最大的正向影响(2.45(2.16 - 2.73),p < 0.0001))。在各种测试的ML模型中,贝叶斯“自动相关性确定”和密集神经网络在测试组中分别呈现出最低和最高的MAE(3.9%和6.8%)。总体模型之间以及两两模型之间的结果无差异(p = 0.93)。
使用ML和人工智能可将KSC的eLD与EfLD之间的差异降低五倍,包括手术技术或专业知识等具有临床影响的因素。临床推断可能有助于对我们的研究结果进行外部验证。