Suppr超能文献

巨噬细胞免疫反应组对纳米颗粒和光热疗法的多变量筛选与自动聚类

Multivariate Screening and Automated Clustering of Macrophage Immunoreactome to Nanoparticles and Photothermal Therapy.

作者信息

Becharef Sonia, Jabbour Léa, Bekaddour Nassima, Avveduto Giulio, Luciani Nathalie, Laurent Gautier, Bazzi Rana, Alphandery Edouard, Roux Stéphane, Silva Amanda K A, Aubertin Kelly, Herbeuval Jean-Philippe, Gazeau Florence

机构信息

Université Paris Cité, NABI, CNRS UMR8175, INSERM U1334, Paris, France.

Université Paris Cité, LCBPT CNRS, UMR8601, Team Chemistry & Biology, Modeling & Immunology for Therapy, Paris, France.

出版信息

Adv Sci (Weinh). 2025 Aug;12(31):e2405860. doi: 10.1002/advs.202405860. Epub 2025 Jun 26.

Abstract

Immunotherapy aims to control the immune system against diseases such as cancer or infections. Nanotechnology is part of the armamentarium to reprogram the immune system in a spatially and temporally controlled manner. However, predicting immune responses using high-throughput tests is challenging due to the immunoreactome's complexity and plasticity. This work presents a fast, machine learning-assisted predictive assay to classify the multifactorial immune responses to any kind of treatments. Engineered human THP-1 monocytes differentiated and polarized into M0, M1, and M2 macrophages are used to monitor nuclear factor Kappa B (NF-kB) and interferon regulatory factor (IRF) pathway activations and gene expression profile in response to metallic nanoparticles (NPs), activated or not by light to induce photothermal therapy (PTT). Principal component analysis (PCA) reveals distinct responses to nanoparticles and the reprogramming toward inflammatory macrophage triggered by PTT. Gold-iron oxide nanoflowers and magnetosomes per se favor polarization toward M2 profile, while light activation shifts this M2-like macrophages toward an M1 phenotype. These findings, confirmed on human blood derived monocytes shed light on the intricate immunomodulatory effects of nanoparticles and PTT on macrophage behavior and provide a basis for an adaptable screening method for the predictive design of therapeutic strategies for immunotherapy in cancer and other diseases.

摘要

免疫疗法旨在调控免疫系统以对抗癌症或感染等疾病。纳米技术是能够以时空可控方式对免疫系统进行重新编程的手段之一。然而,由于免疫反应组的复杂性和可塑性,利用高通量检测来预测免疫反应具有挑战性。这项工作提出了一种快速的、机器学习辅助的预测分析方法,用于对任何类型治疗的多因素免疫反应进行分类。工程化的人类THP-1单核细胞分化并极化为M0、M1和M2巨噬细胞,用于监测核因子κB(NF-κB)和干扰素调节因子(IRF)通路的激活情况以及响应金属纳米颗粒(NP)(无论是否通过光激活以诱导光热疗法(PTT))的基因表达谱。主成分分析(PCA)揭示了对纳米颗粒的不同反应以及PTT引发的向炎性巨噬细胞的重新编程。金-氧化铁纳米花和磁小体本身有利于向M2表型极化,而光激活则使这种M2样巨噬细胞转变为M1表型。这些在人血单核细胞上得到证实的发现,揭示了纳米颗粒和PTT对巨噬细胞行为的复杂免疫调节作用,并为癌症和其他疾病免疫治疗策略的预测性设计提供了一种适应性筛选方法的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0d8/12376647/a299ee5c7ace/ADVS-12-2405860-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验