Becharef Sonia, Jabbour Léa, Bekaddour Nassima, Avveduto Giulio, Luciani Nathalie, Laurent Gautier, Bazzi Rana, Alphandery Edouard, Roux Stéphane, Silva Amanda K A, Aubertin Kelly, Herbeuval Jean-Philippe, Gazeau Florence
Université Paris Cité, NABI, CNRS UMR8175, INSERM U1334, Paris, France.
Université Paris Cité, LCBPT CNRS, UMR8601, Team Chemistry & Biology, Modeling & Immunology for Therapy, Paris, France.
Adv Sci (Weinh). 2025 Aug;12(31):e2405860. doi: 10.1002/advs.202405860. Epub 2025 Jun 26.
Immunotherapy aims to control the immune system against diseases such as cancer or infections. Nanotechnology is part of the armamentarium to reprogram the immune system in a spatially and temporally controlled manner. However, predicting immune responses using high-throughput tests is challenging due to the immunoreactome's complexity and plasticity. This work presents a fast, machine learning-assisted predictive assay to classify the multifactorial immune responses to any kind of treatments. Engineered human THP-1 monocytes differentiated and polarized into M0, M1, and M2 macrophages are used to monitor nuclear factor Kappa B (NF-kB) and interferon regulatory factor (IRF) pathway activations and gene expression profile in response to metallic nanoparticles (NPs), activated or not by light to induce photothermal therapy (PTT). Principal component analysis (PCA) reveals distinct responses to nanoparticles and the reprogramming toward inflammatory macrophage triggered by PTT. Gold-iron oxide nanoflowers and magnetosomes per se favor polarization toward M2 profile, while light activation shifts this M2-like macrophages toward an M1 phenotype. These findings, confirmed on human blood derived monocytes shed light on the intricate immunomodulatory effects of nanoparticles and PTT on macrophage behavior and provide a basis for an adaptable screening method for the predictive design of therapeutic strategies for immunotherapy in cancer and other diseases.
免疫疗法旨在调控免疫系统以对抗癌症或感染等疾病。纳米技术是能够以时空可控方式对免疫系统进行重新编程的手段之一。然而,由于免疫反应组的复杂性和可塑性,利用高通量检测来预测免疫反应具有挑战性。这项工作提出了一种快速的、机器学习辅助的预测分析方法,用于对任何类型治疗的多因素免疫反应进行分类。工程化的人类THP-1单核细胞分化并极化为M0、M1和M2巨噬细胞,用于监测核因子κB(NF-κB)和干扰素调节因子(IRF)通路的激活情况以及响应金属纳米颗粒(NP)(无论是否通过光激活以诱导光热疗法(PTT))的基因表达谱。主成分分析(PCA)揭示了对纳米颗粒的不同反应以及PTT引发的向炎性巨噬细胞的重新编程。金-氧化铁纳米花和磁小体本身有利于向M2表型极化,而光激活则使这种M2样巨噬细胞转变为M1表型。这些在人血单核细胞上得到证实的发现,揭示了纳米颗粒和PTT对巨噬细胞行为的复杂免疫调节作用,并为癌症和其他疾病免疫治疗策略的预测性设计提供了一种适应性筛选方法的基础。