Saluri Mihkel, Landreh Michael, Bryant Patrick
Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden.
Science for Life Laboratory, The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Solna, Sweden.
PLoS Comput Biol. 2025 Jun 26;21(6):e1013168. doi: 10.1371/journal.pcbi.1013168. eCollection 2025 Jun.
The risk of pandemics is increasing as global population growth and interconnectedness accelerate. Understanding the structural basis of protein-protein interactions between pathogens and hosts is critical for elucidating pathogenic mechanisms and guiding treatment or vaccine development. Despite 21,064 experimentally supported human-pathogen interactions in the HPIDB, only 52 have resolved structures in the PDB, representing just 0.2%. Advances in protein complex structure prediction, such as AlphaFold, now enable highly accurate modelling of heterodimeric complexes, though their application to host-pathogen interactions, which have distinct evolutionary dynamics, remains underexplored. Here, we investigate the structural protein-protein interaction network between humans and ten pathogens, predicting structures for 9,452 interactions, only 10 of which have known structures. We identify 30 interactions with an expected TM-score ≥0.9, tripling the structural coverage in these networks. A detailed analysis of the Francisella tularensis dihydroprolyl dehydrogenase (IPD) complex with human immunoglobulin kappa constant (IGKC) using homology modelling and native mass spectrometry confirms a predicted 1:2:1 heterotetramer, suggesting potential roles in immune evasion. These findings highlight the transformative potential of structure prediction for rapidly advancing vaccine and drug development against novel pathogenic targets.
随着全球人口增长和相互联系的加速,大流行的风险正在增加。了解病原体与宿主之间蛋白质-蛋白质相互作用的结构基础对于阐明致病机制以及指导治疗或疫苗开发至关重要。尽管在人类-病原体相互作用数据库(HPIDB)中有21,064个经实验支持的人类-病原体相互作用,但在蛋白质数据银行(PDB)中只有52个具有解析结构,仅占0.2%。蛋白质复合物结构预测方面的进展,如AlphaFold,现在能够对异二聚体复合物进行高度准确的建模,不过其在具有独特进化动态的宿主-病原体相互作用中的应用仍未得到充分探索。在这里,我们研究了人类与十种病原体之间的结构蛋白质-蛋白质相互作用网络,预测了9,452个相互作用的结构,其中只有10个具有已知结构。我们确定了30个预期TM分数≥0.9的相互作用,使这些网络中的结构覆盖率增加了两倍。使用同源建模和天然质谱对土拉弗朗西斯菌二氢脯氨酰脱氢酶(IPD)与人类免疫球蛋白κ恒定区(IGKC)的复合物进行的详细分析证实了预测的1:2:1异源四聚体,表明其在免疫逃避中的潜在作用。这些发现突出了结构预测在快速推进针对新型致病靶点的疫苗和药物开发方面的变革潜力。