Suppr超能文献

用于低剂量CT的剂量感知去噪扩散模型。

Dose-aware denoising diffusion model for low-dose CT.

作者信息

Kim Seongjun, Kim Byeong-Joon, Baek Jongduk

机构信息

School of Integrated Technology, Yonsei University, 50, Yonsei-ro, Seoul, South Korea, Seodaemun-gu, Seoul, 03722, Korea (the Republic of).

Artificial Intelligence, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Yonsei Engineering Research Park, Seoul, Seoul, 03722, Korea (the Republic of).

出版信息

Phys Med Biol. 2025 Jun 26. doi: 10.1088/1361-6560/ade8cc.

Abstract

Low-dose computed tomography (LDCT) denoising plays an important role in medical imaging for reducing the radiation dose to patients. Recently, various data-driven and diffusion-based deep learning (DL) methods have been developed and shown promising results in LDCT denoising. However, challenges remain in ensuring generalizability to different datasets and mitigating uncertainty from stochastic sampling. In this paper, we introduce a novel dose-aware diffusion model that effectively reduces CT image noise while maintaining structural fidelity and being generalizable to different dose levels. Approach: Our approach employs a physics-based forward process with continuous timesteps, enabling flexible representation of diverse noise levels. We incorporate a computationally efficient noise calibration module in our diffusion framework that resolves misalignment between intermediate results and their corresponding timesteps. Furthermore, we present a simple yet effective method for estimating appropriate timesteps for unseen LDCT images, allowing generalization to an unknown, arbitrary dose levels. Main Results: Both qualitative and quantitative evaluation results on Mayo Clinic datasets show that the proposed method outperforms existing denoising methods in preserving the noise texture and restoring anatomical structures. The proposed method also shows consistent results on different dose levels and an unseen dataset. Significance: We propose a novel dose-aware diffusion model for LDCT denoising, aiming to address the generalization and uncertainty issues of existing diffusion-based DL methods. Our experimental results demonstrate the effectiveness of the proposed method across different dose levels. We expect that our approach can provide a clinically practical solution for LDCT denoising with its high structural fidelity and computational efficiency.

摘要

低剂量计算机断层扫描(LDCT)去噪在医学成像中对于降低患者辐射剂量起着重要作用。最近,已经开发了各种基于数据驱动和基于扩散的深度学习(DL)方法,并在LDCT去噪中显示出有前景的结果。然而,在确保对不同数据集的通用性以及减轻随机采样带来的不确定性方面仍然存在挑战。在本文中,我们引入了一种新颖的剂量感知扩散模型,该模型在保持结构保真度并能推广到不同剂量水平的同时,有效地降低了CT图像噪声。

方法

我们的方法采用具有连续时间步长的基于物理的正向过程,能够灵活地表示不同的噪声水平。我们在扩散框架中纳入了一个计算效率高的噪声校准模块,该模块解决了中间结果与其相应时间步长之间的不匹配问题。此外,我们提出了一种简单而有效的方法来估计未见LDCT图像的合适时间步长,从而能够推广到未知的任意剂量水平。

主要结果

在梅奥诊所数据集上的定性和定量评估结果均表明,所提出的方法在保留噪声纹理和恢复解剖结构方面优于现有的去噪方法。所提出的方法在不同剂量水平和一个未见数据集上也显示出一致的结果。

意义

我们提出了一种用于LDCT去噪的新颖的剂量感知扩散模型,旨在解决现有基于扩散的深度学习方法的通用性和不确定性问题。我们的实验结果证明了所提出方法在不同剂量水平下的有效性。我们期望我们的方法凭借其高结构保真度和计算效率,能够为LDCT去噪提供一种临床实用的解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验