Predoi Daniela, Ciobanu Carmen Steluţa, Iconaru Simona Liliana, Rokosz Krzysztof, Raaen Steinar, Predoi Silviu-Adrian, Ţălu S̨tefan, Motelica-Heino Mikael
National Institute of Materials Physics, Atomiştilor Street, no. 405A, P.O. Box MG 07, 077125 Măgurele, Romania.
Faculty of Electronics and Computer Science, Koszalin University of Technology, Śniadeckich 2, PL 75-453 Koszalin, Poland.
Langmuir. 2025 Jul 8;41(26):17011-17034. doi: 10.1021/acs.langmuir.5c01585. Epub 2025 Jun 26.
Understanding the behavior of biomaterials under physiological conditions is essential for the development of new materials for implants and bone regeneration. This study addresses the critical need to evaluate how exposure to simulated body fluid (SBF) affects hydroxyapatite (HAp) and dextran-coated hydroxyapatite (HApDx) nanoparticles, which are widely considered for biomedical applications due to their bioactivity and biocompatibility. Structural, morphological, and surface property changes induced by SBF immersion were systematically investigated for the first time using advanced characterization techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), FT-Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and fractal and Minkowski functional analyses. The results revealed that SBF immersion significantly influenced both HAp and HApDx, leading to reduced crystallite sizes, surface smoothening, and enhanced structural homogeneity. FTIR and FT-Raman spectra indicated subtle structural modifications, while SEM and AFM analyses confirmed the formation of a biomimetic apatite layer and a decrease in surface roughness. These changes are indicative of improved bioactivity, suggesting enhanced potential for osteoconductivity and cellular interaction. Biological evaluations using MG63 osteoblast-like cells demonstrated favorable cell viability and adhesion across 24, 48, and 72 h, particularly for the samples immersed in SBF. AFM further confirmed that surface modifications supported the cell attachment and proliferation. Overall, our findings underscore the importance of SBF exposure in enhancing the physicochemical and biological performance of HAp-based materials, reinforcing their promise for biomedical applications.
了解生物材料在生理条件下的行为对于开发用于植入物和骨再生的新材料至关重要。本研究满足了一项关键需求,即评估暴露于模拟体液(SBF)如何影响羟基磷灰石(HAp)和葡聚糖包被的羟基磷灰石(HApDx)纳米颗粒,由于其生物活性和生物相容性,它们被广泛考虑用于生物医学应用。首次使用先进的表征技术,如X射线衍射(XRD)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、傅里叶变换红外光谱(FTIR)、傅里叶变换拉曼光谱、X射线光电子能谱(XPS)以及分形和闵可夫斯基功能分析,系统地研究了SBF浸泡引起的结构、形态和表面性质变化。结果表明,SBF浸泡对HAp和HApDx都有显著影响,导致微晶尺寸减小、表面平滑以及结构均匀性增强。FTIR和FT - 拉曼光谱表明存在细微的结构修饰,而SEM和AFM分析证实形成了仿生磷灰石层且表面粗糙度降低。这些变化表明生物活性得到改善,暗示骨传导性和细胞相互作用的潜力增强。使用MG63成骨样细胞进行的生物学评估表明,在24、48和72小时内细胞活力和粘附良好,特别是对于浸泡在SBF中的样品。AFM进一步证实表面修饰支持细胞附着和增殖。总体而言,我们的研究结果强调了SBF暴露在增强基于HAp的材料的物理化学和生物学性能方面的重要性,强化了它们在生物医学应用中的前景。