文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

农业中转基因生物检测的未来展望:电化学核酸检测策略

Future perspectives of GMO detection in agriculture: strategies for electrochemical nucleic acid detection.

作者信息

Kuprešanin Ana, Jarić Stefan, Novaković Zorica, Radović Marko, Pavlović Marija, Knežić Teodora, Šašić Zorić Ljiljana, Janjušević Ljiljana, Pavlović Zoran

机构信息

BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad, Dr Zorana Đinđića 1, 21000, Novi Sad, Serbia.

出版信息

Mikrochim Acta. 2025 Jun 26;192(7):457. doi: 10.1007/s00604-025-07267-x.


DOI:10.1007/s00604-025-07267-x
PMID:40571859
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12202687/
Abstract

The uncontrolled distribution of genetically modified organisms (GMO)-based food and feed is an increasing global concern, primarily due to limited information about their potential harmful effects. The growing diversity and complexity of GMOs present significant challenges for their detection, traceability, and safety monitoring. Traditionally, GMOs are detected using molecular methods, among which PCR methods are the most explored and are considered the gold standard. However, isothermal nucleic acid amplification methods, though less explored, hold great potential, especially when integrated with biosensor platforms, enabling the development of highly efficient and versatile biosensing systems. This paper provides a comprehensive overview of the recent advances in biosensors utilizing methods of isothermal nucleic acid amplification, highlighting their current progress and future perspectives. We discuss molecular methods for GMO detection, focusing on reaction conditions, amplification efficiency, and compatibility with various detection modalities. Additionally, we investigate the integration of various nanomaterials into transducers, such as electrochemical platforms, together with the electrochemical techniques and detection mechanisms, aiming to outline their synergistic effects with molecular techniques to improve detection sensitivity and enable real-time monitoring. Furthermore, we discuss the applications of GMO biosensors across diverse fields, including food safety and environmental monitoring, while addressing existing challenges and potential strategies for improving the performance, robustness, and practicality of biosensing platforms. Overall, this review highlights the significant progress achieved in GMO biosensors and underscores their promising role in advancing diagnostic and monitoring capabilities.

摘要

基于转基因生物(GMO)的食品和饲料的无控制分发日益引起全球关注,主要原因是关于其潜在有害影响的信息有限。转基因生物的多样性和复杂性不断增加,给其检测、可追溯性和安全监测带来了重大挑战。传统上,转基因生物是使用分子方法进行检测的,其中聚合酶链反应(PCR)方法研究最多,被认为是金标准。然而,等温核酸扩增方法虽然研究较少,但具有很大潜力,特别是与生物传感器平台集成时,能够开发出高效且通用的生物传感系统。本文全面概述了利用等温核酸扩增方法的生物传感器的最新进展,突出了它们目前的进展和未来前景。我们讨论了转基因生物检测的分子方法,重点关注反应条件、扩增效率以及与各种检测方式的兼容性。此外,我们研究了将各种纳米材料集成到传感器中,如电化学平台,以及电化学技术和检测机制,旨在概述它们与分子技术的协同效应,以提高检测灵敏度并实现实时监测。此外,我们讨论了转基因生物传感器在包括食品安全和环境监测在内的不同领域的应用,同时解决现有挑战以及提高生物传感平台性能、稳健性和实用性的潜在策略。总体而言,本综述突出了转基因生物传感器取得的重大进展,并强调了它们在提升诊断和监测能力方面的广阔前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/3cf0daea4f08/604_2025_7267_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/6ffa7f2ebb56/604_2025_7267_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/29f76a3d1e3e/604_2025_7267_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/b28da7abcccf/604_2025_7267_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/5c783d151f32/604_2025_7267_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/836ea88cc90a/604_2025_7267_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/1ab6cdb3bfcc/604_2025_7267_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/9401be7fe3da/604_2025_7267_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/902880809b1e/604_2025_7267_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/0e86ec8c4608/604_2025_7267_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/6533357e89b0/604_2025_7267_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/d1af0a7f4f89/604_2025_7267_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/9b9f5ac6ccdb/604_2025_7267_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/449a1be3d556/604_2025_7267_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/8a73cad8a534/604_2025_7267_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/f4c3c1143dde/604_2025_7267_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/2f0e5ca7f9fd/604_2025_7267_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/5d827312815e/604_2025_7267_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/d2c70155d4a7/604_2025_7267_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/3cf0daea4f08/604_2025_7267_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/6ffa7f2ebb56/604_2025_7267_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/29f76a3d1e3e/604_2025_7267_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/b28da7abcccf/604_2025_7267_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/5c783d151f32/604_2025_7267_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/836ea88cc90a/604_2025_7267_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/1ab6cdb3bfcc/604_2025_7267_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/9401be7fe3da/604_2025_7267_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/902880809b1e/604_2025_7267_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/0e86ec8c4608/604_2025_7267_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/6533357e89b0/604_2025_7267_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/d1af0a7f4f89/604_2025_7267_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/9b9f5ac6ccdb/604_2025_7267_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/449a1be3d556/604_2025_7267_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/8a73cad8a534/604_2025_7267_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/f4c3c1143dde/604_2025_7267_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/2f0e5ca7f9fd/604_2025_7267_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/5d827312815e/604_2025_7267_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/d2c70155d4a7/604_2025_7267_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2741/12202687/3cf0daea4f08/604_2025_7267_Fig19_HTML.jpg

相似文献

[1]
Future perspectives of GMO detection in agriculture: strategies for electrochemical nucleic acid detection.

Mikrochim Acta. 2025-6-26

[2]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[3]
Nucleic acid conjugated gold nanoparticles for biosensing applications: a review.

World J Microbiol Biotechnol. 2025-6-25

[4]
Sexual Harassment and Prevention Training

2025-1

[5]
The quantity, quality and findings of network meta-analyses evaluating the effectiveness of GLP-1 RAs for weight loss: a scoping review.

Health Technol Assess. 2025-6-25

[6]
CRISPR/Cas12a-Based Biosensing: Advances in Mechanisms and Applications for Nucleic Acid Detection.

Biosensors (Basel). 2025-6-4

[7]
Low-complexity manual nucleic acid amplification tests for pulmonary tuberculosis in children.

Cochrane Database Syst Rev. 2025-6-25

[8]
Rapid molecular tests for tuberculosis and tuberculosis drug resistance: a qualitative evidence synthesis of recipient and provider views.

Cochrane Database Syst Rev. 2022-4-26

[9]
Carbon quantum dots as versatile nanomaterials for improving soil health and plant stress tolerance: a comprehensive review.

Planta. 2025-7-9

[10]
Interaction of Nanomaterials with Nucleic Acids and Their Applications in Nucleic Acid Analysis.

Int J Biol Sci. 2025-6-9

本文引用的文献

[1]
A DNA phosphorothioation pathway via adenylated intermediate modulates Tdp machinery.

Nat Chem Biol. 2025-1-16

[2]
Selenium nanoparticles modified niobium MXene for non-enzymatic detection of glucose.

Sci Rep. 2025-1-11

[3]
CRISPR-Cas Systems Associated with Electrolyte-Gated Graphene-Based Transistors: How They Work and How to Combine Them.

Biosensors (Basel). 2024-11-7

[4]
"Blue-red-purple" multicolored lateral flow immunoassay for simultaneous detection of GM crops utilizing RPA and CRISPR/Cas12a.

Talanta. 2025-1-1

[5]
Recent advances in PEDOT/PProDOT-derived nano biosensors: engineering nano assemblies for fostering advanced detection platforms for biomolecule detection.

Nanoscale. 2024-9-26

[6]
A comprehensive adsorption and desorption study on the interaction of DNA oligonucleotides with TiO nanolayers.

Phys Chem Chem Phys. 2024-8-28

[7]
High-performance electrolyte-gated amorphous InGaZnO field-effect transistor for label-free DNA sensing.

Bioelectrochemistry. 2024-12

[8]
Dual electrochemical signal "signal-on-off" sensor based on CHA-Td-HCR and CRISPR-Cas12a for MUC1 detection.

Talanta. 2024-11-1

[9]
Ion-sensitive field effect transistor biosensors for biomarker detection: current progress and challenges.

J Mater Chem B. 2024-9-11

[10]
Multiplex Real-Time Loop-Mediated Isothermal Amplification (LAMP) Based on the Annealing Curve Analysis: Toward an On-Site Multiplex Detection of Transgenic Sequences in Seeds and Food Products.

J Agric Food Chem. 2024-8-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索