Suppr超能文献

反硝化生物滤池中效率、微生物群落及氮代谢:对不同孔隙陶粒滤料的见解

Efficiency, Microbial Communities, and Nitrogen Metabolism in Denitrification Biological Filter: Insights into Varied Pore Ceramsite Media.

作者信息

Song Jiajun, Yu Na, Zhao Cui, Lv Yufeng, Yang Jifu

机构信息

State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Department of Irrigation and Drainage, China Institute of Water Resources and Hydropower Research, Beijing 100048, China.

出版信息

Microorganisms. 2025 May 23;13(6):1187. doi: 10.3390/microorganisms13061187.

Abstract

This study presented an investigation into the role of ceramsite pore structures in optimizing DNBFs for nitrate-contaminated water treatment. Through systematic comparison of three ceramsite media (CE1, CE2, CE3) with distinct pore structures, we elucidated the microbial mechanisms underlying nitrate removal efficiency by analyzing denitrification performance, biomass accumulation, EPS, microbial community structure, and nitrogen metabolic function. Results demonstrated that the CE2 medium, characterized by an effective porosity (pore size > 0.5 μm) of 55.8% and an optimal porosity (pore size 0.5-25 μm) percentage of 83.1%, achieved superior nitrate removal efficiency (87.8%) with an R of 0.82 kg TN/(m·d) at HRT = 1.5 h, outperforming CE1 (0.74 kg TN/(m·d)) and CE3 (0.68 kg TN/(m·d)). Enhanced performance was mechanistically linked to CE2's higher biomass accumulation (8.5 vs. 7.8 mg/m in CE1 and 6.9 mg/m in CE3) and greater EPS production (48.5 vs. 44.7 in CE1 and 35.4 mg/g in CE3), which facilitated biofilm resilience under hydraulic stress. Microbial analysis revealed CE2's unique enrichment of a higher relative abundance of (90.1% vs. 67.2% in CE1 and 47.4% in CE3) and denitrifying taxa (unclassified_f_Comamonadaceae: 42.7%, unclassified_f_Enterobacteriaceae: 35.3%). PICRUST2 showed 1.2- and 1.4-fold higher abundance of denitrification genes (, ) compared to CE1 and CE3, respectively. These findings establish that optimizing ceramsite pore structure, particularly increasing the optimal porosity ratio (pore size 0.5-25 μm) can enhance denitrification efficiency, offering a scalable strategy for cost-effective groundwater remediation. This work provides actionable criteria for designing high-performance DNBFs, with immediate relevance to industrial and municipal wastewater treatment systems facing stringent nitrate discharge limits.

摘要

本研究探讨了陶粒孔隙结构在优化用于硝酸盐污染水处理的生物滤池(DNBFs)中的作用。通过对三种具有不同孔隙结构的陶粒介质(CE1、CE2、CE3)进行系统比较,我们通过分析反硝化性能、生物量积累、胞外聚合物(EPS)、微生物群落结构和氮代谢功能,阐明了硝酸盐去除效率背后的微生物机制。结果表明,CE2介质的有效孔隙率(孔径>0.5μm)为55.8%,最佳孔隙率(孔径0.5 - 25μm)百分比为83.1%,在水力停留时间(HRT)= 1.5 h时,实现了卓越的硝酸盐去除效率(87.8%),反硝化速率为0.82 kg TN/(m·d),优于CE1(0.74 kg TN/(m·d))和CE3(0.68 kg TN/(m·d))。性能的提升在机制上与CE2更高的生物量积累(CE1中为7.8 mg/m,CE3中为6.9 mg/m,CE2中为8.5 mg/m)和更大的EPS产量(CE1中为44.7,CE3中为35.4 mg/g,CE2中为48.5)相关,这有助于在水力应力下生物膜的恢复力。微生物分析表明,CE2独特地富集了更高相对丰度的 (CE1中为67.2%,CE3中为47.4%,CE2中为90.1%)和反硝化类群(未分类的Comamonadaceae科:42.7%,未分类的Enterobacteriaceae科:35.3%)。PICRUST2显示,与CE1和CE3相比,CE2的反硝化基因( , )丰度分别高1.2倍和1.4倍。这些发现表明,优化陶粒孔隙结构,特别是提高最佳孔隙率比例(孔径0.5 - 25μm)可以提高反硝化效率,为具有成本效益的地下水修复提供了一种可扩展的策略。这项工作为设计高性能的DNBFs提供了可行的标准,与面临严格硝酸盐排放限制的工业和市政废水处理系统直接相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5373/12195522/304c5c254f25/microorganisms-13-01187-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验