Li Zihao, Zhu Wenliang, Xu Yiheng, Guo Yunbo, Li Junbo, Song Peng, Liang Ying, You Binquan, Wang Lirong
School of Electronics and Information Technology, Soochow University, Suzhou 215006, China.
Suzhou Institute of Biomedical Engineering and Technology, China Academy of Sciences, Suzhou 215163, China.
Micromachines (Basel). 2025 May 27;16(6):631. doi: 10.3390/mi16060631.
At the core of AI-driven electrocardiogram diagnosis lies the precise localization of the QRS complex. While QRS detection methods for multiple leads have been researched adequately in the last few decades, their multi-lead strategies still need to be designed manually. Therefore, a QRS detector that can fuse multiple leads automatically is still worth investigating.
The proposed QRS detector comprises a leads-distillation module (LDM) and a QRS detection module. The LDM can distill multi-lead signals into single-lead ones. This procedure minimizes the weight proportions assigned to noisy leads, enabling the network to generate a novel signal that facilitates the recognition of QRS waves. The QRS detection module, utilizing U-Net, is capable of discerning QRS complexes from the novel signal.
Our method demonstrates outstanding performance with a parameter count of only 5216. It achieves an excellent F1 score of 99.83 on the MITBIHA database and 99.77 on the INCART database, specifically in the inter-patient pattern. In the cross-database pattern, our approach maintains a strong performance with an F1 score of 99.22 on the INCART database and an F1 score of 99.09 on the MITBIHA database.
Our method provides a novel idea for universal multi-lead QRS detection. It possesses advantages, such as reduced computational parameters, enhanced precision, and heightened compatibility.
Our method canceled the repeated deployment of the QRS detection function to different lead configurations in the electrocardiogram (ECG) diagnostic system. Moreover, the scaling operation may become a simple tool to decrease the computational load of the network.
人工智能驱动的心电图诊断的核心在于QRS波群的精确定位。尽管在过去几十年中已经对多导联的QRS检测方法进行了充分研究,但其多导联策略仍需手动设计。因此,一种能够自动融合多个导联的QRS检测器仍值得研究。
所提出的QRS检测器包括导联蒸馏模块(LDM)和QRS检测模块。LDM可以将多导联信号蒸馏为单导联信号。此过程将分配给噪声导联的权重比例降至最低,使网络能够生成有助于识别QRS波的新信号。利用U-Net的QRS检测模块能够从新信号中辨别出QRS波群。
我们的方法在参数数量仅为5216的情况下表现出色。在MITBIHA数据库上实现了99.83的优异F1分数,在INCART数据库上,特别是在患者间模式下实现了99.77的F1分数。在跨数据库模式下,我们的方法保持了强劲的性能,在INCART数据库上的F1分数为99.22,在MITBIHA数据库上的F1分数为99.09。
我们的方法为通用的多导联QRS检测提供了新思路。它具有计算参数减少、精度提高和兼容性增强等优点。
我们的方法取消了心电图(ECG)诊断系统中QRS检测功能在不同导联配置上的重复部署。此外,缩放操作可能成为降低网络计算负载的简单工具。